首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The etoposide-induced protein Ei24 was initially identified as a p53-responsive, proapoptotic factor, but no clear function has been described. Here, we use a nonbiased proteomics approach to identify members of the importin (IMP) family of nuclear transporters as interactors of Ei24 and characterize an IMPβ-binding-like (IBBL) domain within Ei24. We show that Ei24 can bind specifically to IMPβ1 and IMPα2, but not other IMPs, and use a mutated IMPβ1 derivative to show that Ei24 binds to the same site on IMPβ1 as the IMPα IBB. Ectopic expression of Ei24 reduced the extent of IMPβ1- or IMPα/β1-dependent nuclear protein import specifically, whereas specific alanine substitutions within the IBBL abrogated this activity. Induction of endogenous Ei24 expression through etoposide treatment similarly inhibited nuclear import in a mouse embryonic fibroblast model. Thus, Ei24 can bind specifically to IMPβ1 and IMPα2 to impede their normal role in nuclear import, shedding new light on the cellular functions of Ei24 and its tumor suppressor role.  相似文献   

2.
The translocation of macromolecules into the nucleus is a fundamental eukaryotic process, regulating gene expression, cell division and differentiation, but which is impaired in a range of significant diseases including cancer and viral infection. The import of proteins into the nucleus is generally initiated by a specific, high affinity interaction between nuclear localisation signals (NLSs) and nuclear import receptors in the cytoplasm, and terminated through the disassembly of these complexes in the nucleus. For classical NLSs (cNLSs), this import is mediated by the importin-α (IMPα) adaptor protein, which in turn binds to IMPβ to mediate translocation of nuclear cargo across the nuclear envelope. The interaction and disassembly of import receptor:cargo complexes is reliant on the differential localisation of nucleotide bound Ran across the envelope, maintained in its low affinity, GDP-bound form in the cytoplasm, and its high affinity, GTP-bound form in the nucleus. This in turn is maintained by the differential localisation of Ran regulating proteins, with RanGAP in the cytoplasm maintaining Ran in its GDP-bound form, and RanGEF (Prp20 in yeast) in the nucleus maintaining Ran in its GTP-bound form. Here, we describe the 2.1 Å resolution x-ray crystal structure of IMPα in complex with the NLS of Prp20. We observe 1,091 Å2 of buried surface area mediated by an extensive array of contacts involving residues on armadillo repeats 2-7, utilising both the major and minor NLS binding sites of IMPα to contact bipartite NLS clusters 17RAKKMSK23 and 3KR4, respectively. One notable feature of the major site is the insertion of Prp20NLS Ala18 between the P0 and P1 NLS sites, noted in only a few classical bipartite NLSs. This study provides a detailed account of the binding mechanism enabling Prp20 interaction with the nuclear import receptor, and additional new information for the interaction between IMPα and cargo.  相似文献   

3.
Regulated nucleocytoplasmic transport of proteins is central to cellular function and dysfunction during processes such as viral infection. Active protein trafficking into and out of the nucleus is dependent on the presence within cargo proteins of intrinsic specific modular signals for nuclear import (nuclear localization signals, NLSs) and export (nuclear export signals, NESs). Rabies virus (RabV) phospho (P) protein, which is largely responsible for antagonising the host anti-viral response, is expressed as five isoforms (P1-P5). The subcellular trafficking of these isoforms is thought to depend on a balance between the activities of a dominant N-terminal NES (N-NES) and a distinct C-terminal NLS (C-NLS). Specifically, the N-NES-containing isoforms P1 and P2 are cytoplasmic, whereas the shorter P3-P5 isoforms, which lack the N-NES, are believed to be nuclear through the activity of the C-NLS. Here, we show for the first time that RabV P contains an additional strong NLS in the N-terminal region (N-NLS), which, intriguingly, overlaps with the N-NES. This arrangement represents a novel nuclear trafficking module where the N-NLS is inactive in P1 but becomes activated in P3, concomitant with truncation of the N-NES, to become the principal targeting signal conferring nuclear accumulation. Understanding this unique switch arrangement of overlapping, co-regulated NES/NLS sequences is vital to delineating the critical role of RabV P protein in viral infection.  相似文献   

4.
Importin (IMP) superfamily members mediate regulated nucleocytoplasmic transport, which is central to key cellular processes. Although individual IMPα proteins exhibit dynamic synthesis and subcellular localization during cellular differentiation, including during spermatogenesis, little is known of how this affects cell fate. To investigate how IMPαs control cellular development, we conducted a yeast two-hybrid screen for IMPα2 cargoes in embryonic day 12.5 mouse testis, a site of peak IMPα2 expression coincident with germ-line masculization. We identified paraspeckle protein 1 (PSPC1), the original defining component of nuclear paraspeckles, as an IMPα2-binding partner. PSPC1-IMPα2 binding in testis was confirmed in immunoprecipitations and pull downs, and an enzyme-linked immunosorbent assay–based assay demonstrated direct, high-affinity PSPC1 binding to either IMPα2/IMPβ1 or IMPα6/IMPβ1. Coexpression of full-length PSPC1 and IMPα2 in HeLa cells yielded increased PSPC1 localization in nuclear paraspeckles. High-throughput image analysis of >3500 cells indicated IMPα2 levels can directly determine PSPC1-positive nuclear speckle numbers and size; a transport-deficient IMPα2 isoform or small interfering RNA knockdown of IMPα2 each reduced endogenous PSPC1 accumulation in speckles. This first validation of an IMPα2 nuclear import cargo in fetal testis provides novel evidence that PSPC1 delivery to paraspeckles, and consequently paraspeckle function, may be controlled by modulated synthesis of specific IMPs.  相似文献   

5.
Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER.  相似文献   

6.
Protein phosphatase (PP) 2A is a heterotrimeric enzyme regulated by specific subunits. The B56 (or B′/PR61/PPP2R5) class of B-subunits direct PP2A or its substrates to different cellular locations, and the B56α, -β, and -ϵ isoforms are known to localize primarily in the cytoplasm. Here we studied the pathways that regulate B56α subcellular localization. We detected B56α in the cytoplasm and nucleus, and at the nuclear envelope and centrosomes, and show that cytoplasmic localization is dependent on CRM1-mediated nuclear export. The inactivation of CRM1 by leptomycin B or by siRNA knockdown caused nuclear accumulation of ectopic and endogenous B56α. Conversely, CRM1 overexpression shifted B56α to the cytoplasm. We identified a functional nuclear export signal at the C terminus (NES; amino acids 451–469), and site-directed mutagenesis of the NES (L461A) caused nuclear retention of full-length B56α. Active NESs were identified at similar positions in the cytoplasmic B56-β and ϵ isoforms, but not in the nuclear-localized B56-δ or γ isoforms. The transient expression of B56α induced nuclear export of the PP2A catalytic (C) subunit, and this was blocked by the L461A NES mutation. In addition, B56α co-located with the PP2A active (A) subunit at centrosomes, and its centrosome targeting involved sequences that bind to the A-subunit. Fluorescence Recovery after Photobleaching (FRAP) assays revealed dynamic and immobile pools of B56α-GFP, which was rapidly exported from the nucleus and subject to retention at centrosomes. We propose that B56α can act as a PP2A C-subunit chaperone and regulates PP2A activity at diverse subcellular locations.  相似文献   

7.
Glucocorticoid receptor (GR) cycles between a free liganded form that is localized to the nucleus and a heat shock protein (hsp)-immunophilin-complexed, unliganded form that is usually localized to the cytoplasm but that can also be nuclear. In addition, rapid nucleocytoplasmic exchange or shuttling of the receptor underlies its localization. Nuclear import of liganded GR is mediated through a well-characterized sequence, NL1, adjacent to the receptor DNA binding domain and a second, uncharacterized motif, NL2, that overlaps with the ligand binding domain. In this study we report that rapid nuclear import (half-life [t1/2] of 4 to 6 min) of agonist- and antagonist-treated GR and the localization of unliganded, hsp-associated GRs to the nucleus in G0 are mediated through NL1 and correlate with the binding of GR to pendulin/importin α. By contrast, NL2-mediated nuclear transfer of GR occurred more slowly (t1/2 = 45 min to 1 h), was agonist specific, and appeared to be independent of binding to importin α. Together, these results suggest that NL2 mediates the nuclear import of GR through an alternative nuclear import pathway. Nuclear export of GR was inhibited by leptomycin B, suggesting that the transfer of GR to the cytoplasm is mediated through the CRM1-dependent pathway. Inhibition of GR nuclear export by leptomycin B enhanced the nuclear localization of both unliganded, wild-type GR and hormone-treated NL1 GR. These results highlight that the subcellular localization of both liganded and unliganded GRs is determined, at least in part, by a flexible equilibrium between the rates of nuclear import and export.  相似文献   

8.
The IκBα protein is able both to inhibit nuclear import of Rel/NF-κB proteins and to mediate the export of Rel/NF-κB proteins from the nucleus. We now demonstrate that the c-Rel–IκBα complex is stably retained in the cytoplasm in the presence of leptomycin B, a specific inhibitor of Crm1-mediated nuclear export. In contrast, leptomycin B treatment results in the rapid and complete relocalization of the v-Rel–IκBα complex from the cytoplasm to the nucleus. IκBα also mediates the rapid nuclear shuttling of v-Rel in an interspecies heterokaryon assay. Thus, continuous nuclear export is required for cytoplasmic retention of the v-Rel–IκBα complex. Furthermore, although IκBα is able to mask the c-Rel-derived nuclear localization sequence (NLS), IκBα is unable to mask the v-Rel-derived NLS in the context of the v-Rel–IκBα complex. Taken together, our results demonstrate that IκBα is unable to inhibit nuclear import of v-Rel. We have identified two amino acid differences between c-Rel and v-Rel (Y286S and L302P) which link the failure of IκBα to inhibit nuclear import and DNA binding of a mutant c-Rel protein to oncogenesis. Our results support a model in which loss of IκBα-mediated control over c-Rel leads to oncogenic activation of c-Rel.  相似文献   

9.
Npap60 (Nup50) is a nucleoporin that binds directly to importin α. In humans, there are two Npap60 isoforms: the long (Npap60L) and short (Npap60S) forms. In this study, we provide both in vitro and in vivo evidence that Npap60L and Npap60S function differently in nuclear protein import. In vitro binding assays revealed that Npap60S stabilizes the binding of importin α to classical NLS-cargo, whereas Npap60L promotes the release of NLS-cargo from importin α. In vivo time-lapse experiments showed that when the Npap60 protein level is controlled, allowing CAS to efficiently promote the dissociation of the Npap60/importin α complex, Npap60S and Npap60L suppress and accelerate the nuclear import of NLS-cargo, respectively. These results demonstrate that Npap60L and Npap60S have opposing functions and suggest that Npap60L and Npap60S levels must be carefully controlled for efficient nuclear import of classical NLS-cargo in humans. This study provides novel evidence that nucleoporin expression levels regulate nuclear import efficiency.  相似文献   

10.
A 97-kD component of nuclear pore-targeting complex (the β-subunit of nuclear pore–targeting complex [PTAC]/importin/karyopherin) mediates the import of nuclear localization signal (NLS)-containing proteins by anchoring the NLS receptor protein (the α-subunit of PTAC/importin/karyopherin) to the nuclear pore complex (NPC). The import requires a small GTPase Ran, which interacts directly with the β-subunit. The present study describes an examination of the behavior of the β-subunit in living cells and in digitonin-permeabilized cells. In living cells, cytoplasmically injected β-subunit rapidly migrates into the nucleus. The use of deletion mutants reveals that nuclear migration of the β-subunit requires neither Ran- nor α-subunit–binding but only the NPC-binding domain of this molecule, which is also involved in NLS-mediated import. Furthermore, unlike NLS-mediated import, a dominant-negative Ran, defective in GTP-hydrolysis, did not inhibit nuclear migration of the β-subunit. In the digitonin-permeabilized cell-free import assay, the β-subunit transits rapidly through the NPC into the nucleus in a saturating manner in the absence of exogenous addition of soluble factors. These results show that the β-subunit undergoes translocation at the NPC in a Ran-unassisted manner when it does not carry α-subunit/NLS substrate. Therefore, a requirement for Ran arises only when the β-subunit undergoes a translocation reaction together with the α-subunit/NLS substrate. The results provide an insight to the yet unsolved question regarding the mechanism by which proteins are directionally transported through the NPC, and the role of Ran in this process.  相似文献   

11.
12.
The nuclear import of proteins bearing a basic nuclear localization signal (NLS) is dependent on karyopherin α/importin α, which acts as the NLS receptor, and karyopherin β1/importin β, which binds karyopherin α and mediates the nuclear import of the resultant ternary complex. Recently, a second nuclear import pathway that allows the rapid reentry into the nucleus of proteins that participate in the nuclear export of mature mRNAs has been identified. In mammalian cells, a single NLS specific for this alternate pathway, the M9 NLS of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), has been described. The M9 NLS binds a transport factor related to karyopherin β1, termed karyopherin β2 or transportin, and does not require a karyopherin α-like adapter protein. A yeast homolog of karyopherin β2, termed Kap104p, has also been described and proposed to play a role in the nuclear import of a yeast hnRNP-like protein termed Nab2p. Here, we define a Nab2p sequence that binds to Kap104p and that functions as an NLS in both human and yeast cells despite lacking any evident similarity to basic or M9 NLSs. Using an in vitro nuclear import assay, we demonstrate that Kap104p can direct the import into isolated human cell nuclei of a substrate containing a wild-type, but not a defective mutant, Nab2p NLS. In contrast, other NLSs, including the M9 NLS, could not function as substrates for Kap104p. Surprisingly, this in vitro assay also revealed that human karyopherin β1, but not the Kap104p homolog karyopherin β2, could direct the efficient nuclear import of a Nab2p NLS substrate in vitro in the absence of karyopherin α. These data therefore identify a novel NLS sequence, active in both yeast and mammalian cells, that is functionally distinct from both basic and M9 NLS sequences.  相似文献   

13.
14.
15.
A major question in nuclear import concerns the identity of the nucleoporin(s) that interact with the nuclear localization sequences (NLS) receptor and its cargo as they traverse the nuclear pore. Ligand blotting and solution binding studies of isolated proteins have attempted to gain clues to the identities of these nucleoporins, but the studies have from necessity probed binding events far from an in vivo context. Here we have asked what binding events occur in the more physiological context of a Xenopus egg extract, which contains nuclear pore subcomplexes in an assembly competent state. We have then assessed our conclusions in the context of assembled nuclear pores themselves. We have used immunoprecipitation to identify physiologically relevant complexes of nucleoporins and importin subunits. In parallel, we have demonstrated that it is possible to obtain immunofluorescence localization of nucleoporins to subregions of the nuclear pore and its associated structures. By immunoprecipitation, we find the nucleoporin Nup153 and the pore-associated filament protein Tpr, previously shown to reside at distinct sites on the intranuclear side of assembled pores, are each in stable subcomplexes with importin α and β in Xenopus egg extracts. Importin subunits are not in stable complexes with nucleoporins Nup62, Nup93, Nup98, or Nup214/CAN, either in egg extracts or in extracts of assembled nuclear pores. In characterizing the Nup153 complex, we find that Nup153 can bind to a complete import complex containing importin α, β, and an NLS substrate, consistent with an involvement of this nucleoporin in a terminal step of nuclear import. Importin β binds directly to Nup153 and in vitro can do so at multiple sites in the Nup153 FXFG repeat region. Tpr, which has no FXFG repeats, binds to importin β and to importin α/β heterodimers, but only to those that do not carry an NLS substrate. That the complex of Tpr with importin β is fundamentally different from that of Nup153 is additionally demonstrated by the finding that recombinant β or β45–462 fragment freely exchanges with the endogenous importin β/Nup153 complex, but cannot displace endogenous importin β from a Tpr complex. However, the GTP analogue GMP-PNP is able to disassemble both Nup153– and Tpr–importin β complexes. Importantly, analysis of extracts of isolated nuclei indicates that Nup153– and Tpr–importin β complexes exist in assembled nuclear pores. Thus, Nup153 and Tpr are major physiological binding sites for importin β. Models for the roles of these interactions are discussed.  相似文献   

16.

Background

Signaling through MEK→ERK1/2 and PI3 kinases is implicated in many aspects of cell physiology, including the survival of oxidant exposure. Oxidants play a role in numerous physiological and pathophysiological processes, many of which rely on transport in and out of the nucleus. However, how oxidative stress impacts nuclear trafficking is not well defined.

Methodology/Principal Findings

To better understand the effect of stress on nucleocytoplasmic trafficking, we exposed cells to the oxidant diethyl maleate. This treatment activated MEK→ERK1/2 as well as PI3 kinase→Akt cascades and triggered the inhibition of classical nuclear import. To define the molecular mechanisms that regulate nuclear transport, we examined whether MEK and PI3 kinase signaling affected the localization of key transport factors. Using recently developed tools for image acquisition and analysis, the subcellular distributions of importin-α, CAS, and nucleoporins Nup153 and Nup88 were quantified in different cellular compartments. These studies identified specific profiles for the localization of transport factors in the nucleus and cytoplasm, and at the nuclear envelope. Our results demonstrate that MEK and PI3 kinase signaling as well as oxidative stress control nuclear trafficking and the localization of transport components. Furthermore, stress not only induced changes in transport factor distribution, but also upregulated post-translational modification of transport factors. Our results are consistent with the idea that the phosphorylation of importin-α, CAS, Nup153, and Nup88, and the O-GlcNAc modification of Nup153 increase when cells are exposed to oxidant.

Conclusions/Significance

Our studies defined the complex regulation of classical nuclear import and identified key transport factors that are targeted by stress, MEK, and PI3 kinase signaling.  相似文献   

17.
Nuclear protein import requires a nuclear localization signal (NLS) receptor and at least three other cytoplasmic factors. The α subunit of the NLS receptor, Rag cohort 1 (Rch1), enters the nucleus, probably in a complex with the β subunit of the receptor, as well as other import factors and the import substrate. To learn more about which factors and/or events end the import reaction and how the import factors return to the cytoplasm, we have studied nucleocytoplasmic shuttling of Rch1 in vivo. Recombinant Rch1 microinjected into Vero or tsBN2 cells was found primarily in the cytoplasm. Rch1 injected into the nucleus was rapidly exported in a temperature-dependent manner. In contrast, a mutant of Rch1 lacking the first 243 residues accumulated in the nuclei of Vero cells after cytoplasmic injection. After nuclear injection, the truncated Rch1 was retained in the nucleus, but either Rch1 residues 207–217 or a heterologous nuclear export signal, but not a mutant form of residues 207–217, restored nuclear export. Loss of the nuclear transport factor RCC1 (regulator of chromosome condensation) at the nonpermissive temperature in the thermosensitive mutant cell line tsBN2 caused nuclear accumulation of wild-type Rch1 injected into the cytoplasm. However, free Rch1 injected into nuclei of tsBN2 cells at the nonpermissive temperature was exported. These results suggested that RCC1 acts at an earlier step in Rch1 recycling, possibly the disassembly of an import complex that contains Rch1 and the import substrate. Consistent with this possibility, incubation of purified RanGTP and RCC1 with NLS receptor and import substrate prevented assembly of receptor/substrate complexes or stimulated their disassembly.  相似文献   

18.
The 2b protein (2b) of cucumber mosaic virus (CMV), an RNA-silencing suppressor (RSS), is a major pathogenicity determinant of CMV. 2b is localized in the nucleus and cytoplasm, and its nuclear import is determined by two nuclear localization signals (NLSs); a carrier protein (importin [IMPα]) is predicted to be involved in 2b’s nuclear transport. Cytoplasmic 2bs play a role in suppression of RNA silencing by binding to small RNAs and AGO proteins. A putative nuclear export signal (NES) motif was also found in 2b, but has not been proved to function. Here, we identified a leucine-rich motif in 2b’s C-terminal half as an NES. We then showed that NES-deficient 2b accumulated abundantly in the nucleus and lost its RSS activity, suggesting that 2b exported from the nucleus can play a role as an RSS. Although two serine residues (S40 and S42) were previously found to be phosphorylated, we also found that an additional phosphorylation site (S28) alone can affect 2b’s nuclear localization and RSS activity. Alanine substitution at S28 impaired the IMPα-mediated nuclear/nucleolar localization of 2b, and RSS activity was even stronger compared to wild-type 2b. In a subcellular fractionation assay, phosphorylated 2bs were detected in the nucleus, and comparison of the accumulation levels of nuclear phospho-2b between wild-type 2b and the NES mutant showed a greatly reduced level of the phosphorylated NES mutant in the nucleus, suggesting that 2bs are dephosphorylated in the nucleus and may be translocated to the cytoplasm in a nonphosphorylated form. These results suggest that 2b manipulates its nucleocytoplasmic transport as if it tracks down its targets, small RNAs and AGOs, in the RNA silencing pathway. We infer that 2b’s efficient RSS activity is maintained by a balance of phosphorylation and dephosphorylation, which are coupled to importin/exportin-mediated shuttling between the nucleus and cytoplasm.  相似文献   

19.
Importin-α is the nuclear import receptor that recognizes the classic monopartite and bipartite nuclear localization sequences (cNLSs), which contain one or two clusters of basic amino acids, respectively. Different importin-α paralogs in a single organism are specific for distinct repertoires of cargos. Structural studies revealed that monopartite cNLSs and the C-terminal basic clusters of the bipartite cNLSs bind to the same site on importin-α, termed the major cNLS-binding site. We used an oriented peptide library approach with five degenerate positions to probe the specificity of the major cNLS-binding site in importin-α. We identified the sequences KKKRR, KKKRK, and KKRKK as the optimal sequences for binding to this site for mouse importin-α2, human importin-α1, and human importin-α5, respectively. The crystal structure of mouse importin-α2 with its optimal peptide confirmed the expected binding mode resembling the binding of simian virus 40 large tumor-antigen cNLS. Binding assays confirmed that the peptides containing these sequences bound to the corresponding proteins with low nanomolar affinities. Nuclear import assays showed that the sequences acted as functional cNLSs, with specificity for particular importin-αs. This is the first time that structural information has been linked to an oriented peptide library screening approach for importin-α; the results will contribute to understanding of the sequence determinants of cNLSs, and may help identify as yet unidentified cNLSs in novel proteins.  相似文献   

20.
The metabolic regulator AMP-activated protein kinase (AMPK) maintains cellular homeostasis through regulation of proteins involved in energy-producing and -consuming pathways. Although AMPK phosphorylation targets include cytoplasmic and nuclear proteins, the precise mechanisms that regulate AMPK localization, and thus its access to these substrates, are unclear. We identify highly conserved carboxy-terminal hydrophobic amino acids that function as a leptomycin B–sensitive, CRM1-dependent nuclear export sequence (NES) in the AMPK catalytic subunit (AMPKα). When this sequence is modified AMPKα shows increased nuclear localization via a Ran-dependent import pathway. Cytoplasmic localization can be restored by substituting well-defined snurportin-1 or protein kinase A inhibitor (PKIA) CRM1-binding NESs into AMPKα. We demonstrate a functional requirement in vivo for the AMPKα carboxy-terminal NES, as transgenic Drosophila expressing AMPKα lacking this NES fail to rescue lethality of AMPKα null mutant flies and show decreased activation loop phosphorylation under heat-shock stress. Sequestered to the nucleus, this truncated protein shows highly reduced phosphorylation at the key Thr172 activation residue, suggesting that AMPK activation predominantly occurs in the cytoplasm under unstressed conditions. Thus, modulation of CRM1-mediated export of AMPKα via its C-terminal NES provides an additional mechanism for cells to use in the regulation of AMPK activity and localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号