首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sustainability of human life on Earth depends upon the integrity of the relationship between humanity and nature. Natural systems support humanity, and knowledge and understanding of how nature works form the foundation of ecological literacy. It is ecological literacy, and science literacy in general, that underpins our capacity as humans to make well‐informed decisions about how to live in sustainable ways. It is of concern that levels of ecological knowledge and understanding within many contemporary human communities may be too low to enable effective decision‐making in support of sustainable human settlements. Our concern led to an exploration of the concept of ecological literacy and the assessment of a sample of South Australian adults. We found that while ecological literacy can vary significantly in correlation with a range of socio‐demographic and psychographic characteristics, no one factor is necessarily more critical than another. Based on this work, we have identified five pathways for growing eco‐literate communities. While the patterns and drivers of ecological knowledge and understanding naturally vary between cultures and communities, our findings certainly invite serious consideration for a society, and indeed a world, that aspires to cultivate informed citizenry, leadership and governance with capacity for building sustainable human settlements.  相似文献   

2.
Improving our understanding of species responses to environmental changes is an important contribution ecologists can make to facilitate effective management decisions. Novel synthetic approaches to assessing biodiversity and ecosystem integrity are needed, ideally including all species living in a community and the dynamics defining their ecological relationships. Here, we present and apply an integrative approach that links high‐throughput, multicharacter taxonomy with community ecology. The overall purpose is to enable the coupling of biodiversity assessments with investigations into the nature of ecological interactions in a community‐level data set. We collected 1195 gastropods and crabs in British Columbia. First, the General mixed Yule‐coalescent (GMYC) and the Poisson Tree Processes (PTP) methods for proposing primary species‐hypotheses based on cox1 sequences were evaluated against an integrative taxonomic framework. We then used data on the geographic distribution of delineated species to test species co‐occurrence patterns for nonrandomness using community‐wide and pairwise approaches. Results showed that PTP generally outperformed GMYC and thus constitutes a more effective option for producing species‐hypotheses in community‐level data sets. Nonrandom species co‐occurrence patterns indicative of ecological relationships or habitat preferences were observed for grazer gastropods, whereas assemblages of carnivorous gastropods and crabs appeared influenced by random processes. Species‐pair associations were consistent with current ecological knowledge, thus suggesting that applying community assembly within a large taxonomical framework constitutes a valuable tool for assessing ecological interactions. Combining phylogenetic, morphological and co‐occurrence data enabled an integrated view of communities, providing both a conceptual and pragmatic framework for biodiversity assessments and investigations into community dynamics.  相似文献   

3.
In the second half of the 20th century, investigations of indigenous environmental knowledge have been the subject of broader anthropological debates over how knowledge and experience are formed. Many such approaches have focused on environmental nomenclature and taxonomy, or what Roy Ellen has called “formal lexical knowledge” (1999). Such knowledge is readily available to an ethnographer and also more easily transmitted through language between subjects. These characteristics of formal lexical knowledge have led to considerable attention given to differences in environmental knowledge between cultures and have possibly resulted in the inflation of the efficacy of language in forming knowledge. However, if a different form of environmental knowledge is examined are there differences that emerge within communities and other processes beyond symbolic systems that shape knowledge? To address these questions, individuals in two Balinese agricultural communities were asked to construct food webs by linking photos of plant and animal species according to ecological interaction. The results showed significant variation in subjects’ knowledge by gender, which corresponds to labor experience in Balinese wet rice agricultural systems. By shifting attention toward emic models of ecological interactions, this article attempts to demonstrate (1) that environmental knowledge differs within a single community; and, (2) the role of labor experience or praxis has in forming environmental knowledge.  相似文献   

4.
鉴于全球森林均呈现片段化(破碎化)的分布状态, 理解片段化森林群落构建的过程很有必要。该文通过综述群落构建的主要生态过程如生态漂变、扩散、选择和物种形成等在片段化森林群落构建中的相对作用, 发现因片段化森林形成方式的不同, 重构群落(片段化生境中通过次生演替重新形成的森林群落)和解构群落(原有森林被片段化后形成的森林群落)在不同演替阶段所受到的主要生态过程的相对作用有所不同。虽然利用基于群落内物种分布格局推测构建过程(如物种多度分布、零模型结合β多样性的方法、功能特征的收敛和发散等)、人工控制实验、群落结构动态分析等方法对片段化森林中群落构建的过程进行了有效的检验, 但是针对片段化森林群落构建过程的实验性研究仍然不足。未来有待在理论模型、群落构建过程的检验以及理论与物种保护相结合等方面继续开展深入的研究。  相似文献   

5.
Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights into the important ecological associations between understory plant community composition and heterogeneity in ecosystem properties and processes within forests dominated by a single canopy species.  相似文献   

6.
Understanding the interactions of co-occurring species within and across trophic levels provides key information needed for understanding the ecological and evolutionary processes that underlie biological diversity. As genetics has only recently been integrated into the study of community-level interactions, the time is right for a critical evaluation of potential new, gene-based approaches to studying communities. Next-generation molecular techniques, used in parallel with field-based observations and manipulative experiments across spatio-temporal gradients, are key to expanding our understanding of community-level processes. Here, we introduce a variety of ‘-omics’ tools, with recent studies of plant–insect herbivores and of ectomycorrhizal systems providing detailed examples of how next-generation approaches can revolutionize our understanding of interspecific interactions. We suggest ways that novel technologies may convert community genetics from a field that relies on correlative inference to one that reveals causal mechanisms of genetic co-variation and adaptations within communities.  相似文献   

7.
Although there have been many studies of the ecology of primates in communities throughout the world, there have been few attempts to compare community ecology within and among continents. In this study the ecological characteristics of the sympatric primate species at eight localities—two from each of the major biogeographic areas inhabited by primates today—South America, Africa, Madagascar, and Asia—were compared using a multivariate technique (principal components analysis of the correlation matrix) to summarize the ten dimensional ecological niche space. The most striking clustering of species in ecological multivariate space is according to phylogeny with closely related species showing similar ecological features. Likewise, the ecological characteristics of individual communities are determined by phylogenetic groups present at each locality or biogeographic region. As a result, communities within any biogeographical region are more similar ecologically to one another than to communities from other continental areas. In several measures of ecological diversity among the species comprising each community, the neotropical communities show lower overall diversity than do communities from other continents.  相似文献   

8.
Theories of the differentiation of ecological communities on landscapes have typically not considered evolutionary dynamics. Here we analytically study the expected differentiation among local communities in a large metacommunity, undergoing speciation, ecological drift and intercommunity dispersal, in the context of neutral theory. We demonstrate that heterogeneity in species diversity and abundance arises among communities when local communities are small and intercommunity migration is infrequent. We propose a new measure to describe community differentiation, defined as the average correlation or the average probability (Cst) that two randomly sampled individuals of the same species within local communities are from the same ancestor. The effects of driving forces (migration, mutation, and ecological drift) are incorporated into the two-level hierarchical community structure in a finite island model of neutral communities. Community differentiation can increase the effective metacommunity size or the Hubbell's fundamental species diversity in the metacommunity by a factor (1−Cst)−1. Significant community differentiation arises when Cst≠0. Intercommunity migration promotes species diversity in local communities but reduce species diversity in the metacommunity. In either the finite or infinite island case, one can estimate the number of intercommunity migrants by using multiple local community datasets when the speciation is negligible in the neutral local communities, or by using the metacommunity dataset when the speciation is included in the local neutral communities. These results highlight the significance of the evolutionary mechanisms in generating heterogeneous communities in the absence of complicated ecological processes on large landscapes.  相似文献   

9.
1.?A major goal in community ecology is to identify mechanisms that govern the assembly and maintenance of ecological communities. Current models of metacommunity dynamics differ chiefly in the relative emphasis placed on dispersal limitation and niche differentiation as causal mechanisms structuring ecological communities. Herein we investigate the relative roles of these two mechanisms in structuring primate communities in Africa, South America, Madagascar and Borneo. 2.?We hypothesized that if dispersal limitation is important in structuring communities, then community similarity should depend on geographical proximity even after controlling for ecological similarity. Conversely, if communities are assembled primarily through niche processes, then community similarity should be determined by ecological similarity regardless of geographical proximity. 3.?We performed Mantel and partial Mantel tests to investigate correlations among primate community similarity, ecological distance and geographical distance. Results showed significant and strongly negative relationships between diurnal primate community similarity and both ecological similarity and geographical distance in Madagascar, but significant and stronger negative relationships between community similarity and geographical distance in African, South American and Bornean metacommunities. 4.?We conclude that dispersal limitation is an important determinant of primate community structure and may play a stronger role in shaping the structure of some terrestrial vertebrate communities than niche differentiation. These patterns are consistent with neutral theory. We recommend tests of functional equivalence to determine the extent to which neutral theory may explain primate community composition.  相似文献   

10.
Tropical hardwood hammocks, among the rarest and most threatened vegetative communities in the United States, occur throughout the 225-km Florida Keys archipelago as it extends toward the Caribbean from the southeast tip of peninsular Florida. Compounding their critical conservation status, tropical hardwood hammocks and the dynamics that support their peculiar species diversity in the region are poorly understood. The goal of this study was to explore the dynamics of the species compositional gradient of the hammocks along the Florida Keys, and to identify significant ecological units within the gradient. The primary data for this research were assembled from the Institute for Regional Conservation's floristic database of South Florida. We were able to extract presence/absence data for 295 species from comprehensive surveys of 23 study sites. Nonmetric multidimensional scaling was used to deconstruct the compositional trends into a reduced ordination space. Cluster analysis was subsequently used to identify discrete ecological units. Additionally, we used vector fitting to interpret the significant correlated ancillary variables. Our main results were three well-fitted nonmetric multidimensional scaling axes with three nonoverlapping ecological units. Of the ancillary variables, latitude, longitude, percent composition from biogeographical regions, richness, and area were correlated to the nonmetric multidimensional scaling results. These results increase our understanding of the community structure of the hammocks along the Florida Keys, and can contribute to increasing our ability to adequately protect and restore tropical hardwood hammocks and other similar tropical dry forest communities throughout the Caribbean.  相似文献   

11.
Recently, Looijen & van Andel (1999) proposed a new definition of an ecological community by using two criteria: (1) restricting membership by taxonomic relatedness, and (2) defining boundaries by the intersection of the area of population range boundaries. I analyze the implications of their definition and explore the limitations of the approach. Overall, I show this definition to be highly scale-limited, to not encompass many ecological concepts developed for the community level, and to have hidden assumptions that are not met in natural systems. An alternative model of the ecological community is proposed as a contrast, a model based on the community of an individual, in which individuals and interactions are used to develop the larger entity of an ecological community. This alternative model illustrates that the principal problems Looijen & van Andel (1999) discussed about previous community concepts with respect to application to vegetation classification are not ‘problems’ but are characteristics of ecological communities. Any definition of an ecological community must be able to incorporate these characteristics as well as current ecological concepts used at the community level.  相似文献   

12.
The purpose of this paper is to document relationships between knowledge of plant use and indicators of modernization in Mexico. The model we are testing envisions increasing loss of plant use knowledge with increasing modernization indicated by loss of indigenous language and acquisition of nontraditional community services such as literacy and quality of housing. As predicted, we demonstrate that empirical knowledge about plant use is both more diverse and more evenly shared by people speaking an indigenous language—the Huastec—than by mestizo and Spanish-speaking indigenous populations in the Sierra de Manantlan. Our analyses also indicate that the adoption of modern community services by eight rural communities in the Sierra de Manantlan of western Mexico has had notable effects eroding traditional knowledge about useful plants in some but not all communities. From this we suggest that even though traditional knowledge about plants probably suffered a decline that accompanied loss of the indigenous language in Manantlan, traditional knowledge may be able to survive the modernization process today where such knowledge has an important role in subsistence.  相似文献   

13.
Conventional theories of population and community dynamics are based on a single currency such as number of individuals, biomass, carbon or energy. However, organisms are constructed of multiple elements and often require them (in particular carbon, phosphorus and nitrogen) in different ratios than provided by their resources; this mismatch may constrain the net transfer of energy and elements through trophic levels. Ecological stoichiometry, the study of the balance of elements in ecological processes, offers a framework for exploring ecological effects of such constraints. We review recent theoretical and empirical studies that have considered how stoichiometry may affect population and community dynamics. These studies show that stoichiometric constraints can affect several properties of populations (e.g. stability, oscillations, consumer extinction) and communities (e.g. coexistence of competitors, competitive interactions between different guilds). We highlight gaps in general knowledge and focus on areas of population and community ecology where incorporation of stoichiometric constraints may be particularly fruitful, such as studies of demographic bottlenecks, spatial processes, and multi-species interactions. Finally, we suggest promising directions for new research by recommending potential study systems (terrestrial insects, detritivory-based webs, soil communities) to improve our understanding of populations and communities. Our conclusion is that a better integration of stoichiometric principles and other theoretical approaches in ecology may allow for a richer understanding of both population and community structure and dynamics.  相似文献   

14.
Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far.Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German ‘Biodiversity Exploratory’ research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics.  相似文献   

15.
Guo Q  Shaffer T  Buhl T 《Ecology letters》2006,9(12):1284-1292
Detailed knowledge of the relationship between plant diversity and productivity is critical for advancing our understanding of ecosystem functioning and for achieving success in habitat restoration efforts. However, effects and interactions of diversity, succession and biotic invasions on productivity remain elusive. We studied newly established communities in relation to preexisting homogeneous vegetation invaded by exotic plants in the northern Great Plains, USA, at four study sites for 3 years. We observed variant diversity–productivity relationships for the seeded communities (generally positive monotonic at three sites and non-monotonic at the other site) but no relationships for the resident community or the seeded and resident communities combined at all sites and all years. Community richness was enhanced by seeding additional species but productivity was not. The optimal diversity (as indicated by maximum productivity) changed among sites and as the community developed. The findings shed new light on ecosystem functioning of biodiversity under different conditions and have important implications for restoration.  相似文献   

16.
Salt marshes are important ecosystems whose plant and microbial communities can alter terrestrially derived pollutants prior to coastal water discharge. However, knowledge regarding relationships between anthropogenic pollutant levels and salt marsh microbial communities is limited, and salt marshes on the West Coast of the United States are rarely examined. In this study, we investigated the relationships between microbial community composition and 24 pollutants (20 metals and 4 organics) in two California salt marshes. Multivariate ordination techniques were used to assess how bacterial community composition, as determined by terminal restriction fragment length polymorphism and phospholipid fatty acid analyses, was related to pollution. Sea urchin embryo toxicity measurements and plant tissue metabolite profiles were considered two other biometrics of pollution. Spatial effects were strongly manifested across marshes and across channel elevations within marshes. Utilizing partial canonical correspondence analysis, an ordination technique new to microbial ecology, we found that several metals were strongly associated with microbial community composition after accounting for spatial effects. The major patterns in plant metabolite profiles were consistent with patterns across microbial community profiles, but sea urchin embryo assays, which are commonly used to evaluate ecological toxicity, had no identifiable relationships with pollution. Whereas salt marshes are generally dynamic and complex habitats, microbial communities in these marshes appear to be relatively sensitive indicators of toxic pollutants.  相似文献   

17.
Intersite relationships among nematode communities of 18 Indiana mixed hardwood stands of varying composition, soils, physiography and past management practices were determined by community ordination techniques. All sites were sampled in April, July and October of 1968 and 1969, and ordinations were based on the number of individuals of each nematode species at each site at each sampling period. The resulting groupings correlated well with groupings based on forest types and successional stages of the tree communities at the sites, and also with groupings based on well-defined soil types. Results were similar to those obtained previously with a resemblance equation which used qualitative data only; but the present study provided more information on species associations and relationships and ecological distance between sites.  相似文献   

18.
Among numerous mechanisms shaping the unimodal relationship between diversity and community biomass, the trade-off model of “CRS” theory is the most famous one. However, recent researches indicate that this relationship may also emerge under the neutral model where all species are identical with each other. By using an individual-based spatially-explicit model, we evaluated the underlying mechanisms shaping this curve for both models under different disturbance levels. We found unimodal relationships emerged for both models at low and medium disturbance levels; the richness for the trade-off community was lower than the neutral community for most of the environment severity levels, especially at the benign environment due to the strong competitive exclusions among species. Whereas under high disturbance level, the positive relationships emerged for both models; both communities had similar richness with their curves nearly overlapped with each other, that is, because the high disturbance intensity strongly decreased the competitive exclusions within the trade-off community. Our results indicate that although the underlying mechanisms are totally different, both models will produce the similar relationship between diversity and community biomass under different disturbance levels.  相似文献   

19.
Ecological communities and their response to environmental gradients are increasingly being described by measures of trait composition at the community level – the trait‐based approach. Whether ecological or non‐ecological processes influence trait composition between communities has been debated. Understanding the processes that influence trait composition is important for reconstructing paleoenvironmental conditions from fossil deposits and for understanding changes in community functionality through time. Here, we assess the influence of ecological and non‐ecological processes on the distribution of traits within North American mammals. We found that non‐ecological processes including historical contingency, spatial autocorrelation, and evolutionary history do not influence trait composition; however, the variance in trait composition is highly explained by climate gradients. Our results suggest that habitat breadth, terrestriality, diet breadth, and reproductive traits are strong candidates as proxies for measuring functional aspects of environments in the past and present.  相似文献   

20.
Soil microbial diversity and the sustainability of agricultural soils   总被引:72,自引:1,他引:71  
Many world ecosystems are in various states of decline evidenced by erosion, low productivity, and poor water quality caused by forest clearing, intensive agricultural production, and continued use of land resources for purposes that are not sustainable. The biological diversity of these systems is being altered. Little research has been conducted to quantify the beneficial relationships between microbial diversity, soil and plant quality, and ecosystem sustainability. Ecosystem functioning is governed largely by soil microbial dynamics. Differences in microbial properties and activities of soils have been reported but are restricted to general ecological enumeration methods or activity levels, which are limited in their ability to describe a particular ecosystem. Microbial populations and their responses to stresses have been traditionally studied at the process level, in terms of total numbers of microorganisms, biomass, respiration rates, and enzyme activities, with little attention being paid to responses at the community or the organismal levels. These process level measurements, although critical to understanding the ecosystem, may be insensitive to community level changes due to the redundancy of these functions. As microbial communities comprise complex interactions between diverse organisms, they should be studied as such, and not as a black box into which inputs are entered and outputs are received at measured rates. Microbial communities and their processes need to be examined in relation to not only the individuals that comprise the community, but the effect of perturbations or environmental stresses on those communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号