首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Previously 'frozen' Tulipa gesneriana L. bulbs cv. Apeldoorn, were planted and grown at higher temperatures to study the role of invertase (EC 3.2.1.26) in the cold-induced elongation of the flower stalk internodes. After planting, flower stalks were left intact, or, the leaves and flower bud were both removed to inhibit internode elongation. In intact flower stalks, elongation of the internodes was accompanied by an accumulation of glucose and an initial decrease in the sucrose content g,−1 dry weight. Insoluble invertase activity g,−1 dry weight hardly changed, but soluble invertase activity showed a peak pattern, that was related, at least for the greater part, to the changes in the sugar contents. Peak activities of soluble invertase were found during (lower- and uppermost internodes) or around the onset of the rapid phase of internode elongation (middle internodes). Internode elongation and glucose accumulation immediately ceased when the leaves and flower bud were removed. Insoluble invertase activity g,−1 dry weight remained at its initial level (lowermost internode) or increased more towards the upper internodes. Soluble invertase activity did not further increase (uppermost internode) or decreased abruptly to a low level. It is concluded that soluble invertase may be one of the factors contributing to glucose accumulation and internode elongation in the tulip flower stalk.  相似文献   

2.
Tulip bulbs cv. Apeldoorn are dry-stored at 5°C for 12 weeks to ensure sufficient elongation of the flower stalk, when subsequently planted at higher temperatures (17–20°C). To investigate whether free polyamines are involved in this process, flower stalk internodes were analyzed during dry-storage and after planting of the bulbs.During dry-storage for 12 weeks at 5°C (cooled) and 17°C (non-cooled), the free putrescine, spermidine and spermine amounts per flower stalk increased. The putrescine amount increased at 5°C significantly more than at 17°C, whereas the opposite was found for the spermine amount. These differences developed early during dry-storage and disappeared rapidly at subsequent higher temperatures.After planting, the lower- and uppermost flower stalk internodes of the pre-cooled bulbs elongated much faster than those of the non-cooled ones. In the pre-cooled bulbs, the free polyamine amounts per internode increased with time after planting, but the time course of these changes was different. In the non-cooled bulbs, the free polyamine amounts increased to a much lesser extent or remained more or less constant.It is argued that the observed changes in the free polyamine contents are probably not required for the cold-induced extension growth of tulips cv. Apeldoorn.Abbreviations PA polyamine - Put putrescine - Spd spermidine - Spm spermine  相似文献   

3.
Sucrose, glucose and fructose concentrations, and sucrolytic enzyme activities were measured in the developing shoots and internodes of sprouting sugarcane setts (Saccharum spp, variety N19). The most striking change during the sink-source transition of the internode and germination of the axillary bud is a more than five-fold induction of cell wall invertase in the germinating bud. In contrast, soluble acid invertase is the main sucrose hydrolytic activity induced in the internodal tissue. A cycle of breakdown and synthesis of sucrose was evident in both the internodes and the shoots. During shoot establishment, the sucrose content decreased and the hexose content increased in the internodal tissues while both sucrose and hexoses continuously accumulated in the shoots. Over the sprouting period internode, dry mass was reduced by 25 and 30 % in plants incubated in a dark/light cycle or total darkness, respectively. Sucrose accounted for 90 % of the dry mass loss. The most significant changes in SuSy activity are in the synthesis direction in the shoots resulting in a decrease in the breakdown/synthesis ratio. In contrast the SuSy activity in the internodal tissue decrease and more so in the synthesis activity resulting in an increase in the breakdown to synthesis ratio.  相似文献   

4.
Increased activity of α-amylase in bean stems occurred during cellular autolysis in the pith region. In etiolated pea seedlings, α-amylase activity increased sequentially in the first, second, and third internodes. In light-grown seedlings, the increase was initially observed in the first internode, then simultaneously in the second and third internodes. In all internodes, these changes were observed in regions undergoing cellular autolysis in the cortex region. As in bean hypocotyls, α-amylase activity occurred in tissues virtually devoid of starch. Sequential accumulation and then decline in protein and sugar concentrations in each internode indicate a remobilization of materials from nongrowing regions of the stem. These results are consistent with the hypothesis that regulation of α-amylase activity is related to this remobilization.  相似文献   

5.
In the stem of Phaseolus vulgaris L. the specific activity ofacid invertase was highest in the most rapidly elongating internode.Activity of the enzyme was very low in internodes which hadcompleted their elongation, in young internodes before the onsetof rapid elongation, and in the apical bud. From shortly afterits emergence from the apical bud the elongation of internode3 was attributable mainly to cell expansion. Total and specificactivities of acid invertase in this internode rose to a maximumat the time of most rapid elongation and then declined. Transferof plants to complete darkness, or treatment of plants withgibberellic acid (GA3), increased the rate of internode elongationand final internode length by stimulating cell expansion. Bothtreatments rapidly increased the total and specific activitiesof acid invertase in the responding internodes; peak activitiesof the enzyme occurred at the time of most rapid cell expansion. In light-grown plants, including those treated with GA3, rapidcell and internode elongation and high specific activities ofacid invertase were associated with high concentrations of hexosesugar and low concentrations of sucrose. As cell growth ratesand invertase activities declined, the concentration of hexosefell and that of sucrose rose. In plants transferred to darkness,stimulated cell elongation was accompanied by a rapid decreasein hexose concentration and the disappearance of sucrose, indicatingrapid utilization of hexose. No sucrose was detected in theapical tissues of light-grown plants. The results are discussed in relation to the role of acid invertasein the provision of carbon substrates for cell growth. Key words: Cell expansion, Acid invertase, Hexose, Sucrose, Phaseolus  相似文献   

6.
The activities of soluble invertase (EC 3.2.1.26), cell wall invertase (EC 3.2.1.26) and sucrose synthase (EC 2.4.1.13) were determined in Easter lily ( Lilium longiflorum Thunb. cv. Nellie White) floral organs during flower development. These enzyme activities were correlated with dry weight gains and carbohydrate pools to investigate the importance of their expression in maintaining sink strength of floral organs. In the early stages of flower bud development, anthers exhibited the highest rates of dry weight gain and activity of sucrolytic enzymes. Once anther growth was completed, the dry weight gain of tepal, filament, stigma and style increased with a concomitant increase in hexose concentrations and invertase activity. Although all three enzymes capable of catalyzing sucrose cleavage were present in every flower organ of L. longiflorum , soluble invertase was the predominant enzyme in all flower organs except stigma where cell wall invertase dominated. Soluble invertase activity was highly correlated with dry weight gain in most of the flower organs.  相似文献   

7.
《Phytochemistry》1986,25(5):1073-1076
The amounts of glucose and fructose in a range of harvested tubers of Solanum tuberosum were compared with the labelling of these hexoses by [U-14C]sucrose supplied to the tubers. Hexose content varied. Fructose was more heavily labelled than glucose. There was no correlation between the amounts of glucose and fructose in the tuber and their labelling. The maximum catalytic activities of α-glucan phosphorylase, acid invertase, alkaline invertase, sucrose synthase, α-amylase and β-amylase in tubers stored for 17 weeks at 5° and at 10° were estimated. The values showed no clear correlation with hexose content, but provided sound evidence that starch breakdown was phosphorolytic. It is suggested that the amounts of glucose and fructose in mature harvested tubers may be determined more by the partitioning of the translocated sucrose during the development of the tubers than by the metabolism of the harvested tuber.  相似文献   

8.
Decapitation of the fully-elongated fourth internode of Phaseolus vulgaris plants resulted in the disappearance from the internode of soluble acid invertase (EC 3.2.1.26). This loss was prevented by local applications to the internode of indol-3yl-acetic acid (IAA) and, at the point of IAA application, the specific activity of the enzyme increased by up to 3 times its initial value within 48 h of treatment. IAA applications stimulated the acropetal translocation to the internode of 14C-sucrose applied to the subtending (second) trifoliate leaf 30 h after decapitation and the start of the auxin treatment. Labelled assimilates accumulated in the IAA-treated region of the internode. Following decapitation the concentration of hexose sugars in the internode fell and that of sucrose rose substantially, but these trends were reversed by IAA treatment. However, small local accumulations of sucrose occurred at the point of auxin application where tissue concentrations of IAA were greatest (determined using [1-14C] IAA).Considerable quantities of starch were present in the ground parenchyma of the internodes at the start of the experiment but, in the absence of IAA, this was remobilised within 48 h of decapitation. IAA prevented starch loss at and below its point of application to the internode, but not from more distal tissues. Cambial proliferation, radial growth and lignification were stimulated in and below IAA-treated regions of the internode. These observations are discussed in relation to the hormonal regulation of assimilate translocation in the phloem.  相似文献   

9.
An adequate carbohydrate supply contributes to the survival of seeds under conditions of limited oxygen availability. The amount of soluble, readily fermentable carbohydrates in dry cereal seeds is usually very limited, with starch representing the main storage compound. Starch breakdown during the germination of cereal seeds is the result of the action of hydrolytic enzymes and only through the concerted action of [alpha]-amylase (EC 3.2.1.1), [beta]-amylase (EC 3.2.1.2), debranching enzyme (EC 3.2.1.41), and [alpha]-glucosidase (EC 3.2.1.20) can starch be hydrolyzed completely. We present here data concerning the complete set of starch-degrading enzymes in three cereals, rice (Oryza sativa L.), which is tolerant to anaerobiosis, and wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.), which are unable to germinate under anoxia. Among the cereal seeds tested under anoxia, only rice is able to degrade nonboiled, soluble starch, reflecting the ability to degrade the starch granules in vivo. This is explained by the presence of the complete set of enzymes needed to degrade starch completely either as the result of de novo synthesis ([alpha]-amylase, [beta]-amylase) or activation of preexisting, inactive forms of the enzyme (debranching enzyme, [alpha]-glucosidase). These enzymes are either absent or inactive in wheat and barley seeds kept under anaerobic conditions.  相似文献   

10.
Murata T 《Plant physiology》1968,43(12):1899-1905
Time-sequence analyses of carbohydrate breakdown in germinating rice seeds shows that a rapid breakdown of starch reserve in endosperm starts after about 4 days of germination. Although the major soluble carbohydrate in the dry seed is sucrose, a marked increase in the production of glucose and maltooligosaccharides accompanies the breakdown of starch. Maltotriose was found to constitute the greatest portion of the oligosaccharides throughout the germination stage. α-Amylase activities were found to parallel the pattern of starch breakdown. Assays for phosphorylase activity showed that this enzyme may account for much smaller amounts of starch breakdown per grain, as compared to the amounts hydrolyzed by α-amylase. There was a transient decline in the content of sucrose in the initial 4 days of seed germination, followed by the gradual increase in later germination stages. During the entire germination stage, sucrose synthetase activity was not detected in the endosperm, although appreciable enzyme activity was present in the growing shoot tissues as well as in the frozen rice seeds harvested at the mid-milky stage. We propose the predominant formation of glucose from starch reserves in the endosperm by the action of α-amylase and accompanying hydrolytic enzyme(s) and that this sugar is eventually mobilized to the growing tissues, shoots or roots.  相似文献   

11.
Seeds of bean (Phaseolus vulgaris L.) were germinated by soaking in distilled water or copper chloride solution. The relationships among copper excess treatment, germination rate, dry weight, sugar contents, and carbohydrase activities in cotyledon were investigated. Heavy metal stress provoked a diminution in germination rate and biomass mobilization, as compared with the control. A drastic disorder in soluble sugars export, especially glucose and fructose liberation, was also imposed after exposure to excess copper. This restricted the starch and sucrose breakdown in reserve tissue, as evidenced by the inhibition in the activities of α-amylase and invertase isoenzymes (soluble acid, soluble neutral, cell wall-bound acid).  相似文献   

12.
In lyophilized needles of Norway spruce ( Picea abies [L.] Karsten) and starting from bud break, we determined enzyme activities (sucrose phosphate synthase [SPS; EC 2.4,1.14]. sucrose synthase [SS; EC 2.4,1.13]. acid invertase [AI; EC 3.2,1.26]) and intermediates (starch, sucrose, glucose, fructose; fructose 6-phosphate, fructose 2.6-bisphosphate [F26BP]) of carbohydrate metabolism together with needle weight, shoot length, chlorophyll and protein. For up to 110 days after bud break, samples were taken twice a week from about 25-year-old trees under field conditions. At least three periods can be distinguished during needle maturation. During the first period (up to 45 days after bud break) Al showed the highest extractable activity. This coincided with very high levels of F26BP (up to 11 pmol [mg dry weight]−1) and a transient increase of starch in parallel to a decrease of sucrose. The interval between 45 and 70 days after bud break was characterized by high SS activity (ratio of fructose/glucose >1), much decreased levels of F26BP (down to below 1 pmol [mg dry weight]−1), and a pronounced increase in the dry weight/fresh weight ratio. In parallel, starch declined and soluble carbohydrates increased. Finally, needle maturation was characterized by decreasing SS and continuously increasing SPS activities, so that the ratio of SPS/SS increased more than 6-fold. AI. however, did not decline with maturation. Changes in pool sizes of metabolites and enzyme activities (AI. SPS) are consistent with current concepts on sink/source transition. SS is obviously important with regard to the synthesis of structural polysaccharides.  相似文献   

13.
The mechanisms that control sink capacity are poorly understood.in radish, a major sink is the "storage root", which beginsto thicken early in development, mainly as a result of thickeningof the hypocotyl. We investigated changes in the accumulationof dry matter, sink activity (increase in dry weight of thehypocotyl per unit of dry weight present per unit of time),carbohydrate content, levels of metabolites, activities of enzymesrelated to the breakdown of sucrose, and the profile of solubleproteins, as well as changes in anatomy, using hypocotyls ofa cultivar with a high ratio of "storage root" to shoot. Wefound that sink activity was strongly related to the level andactivity of sucrose synthase but not to the activity of invertase.We also found a significant correlation between sucrose contentand the level and activity of sucrose synthase. Our resultssuggest that sucrose synthase, but not invertase, might be criticalfor the development of the sink activity of the radish hypocotyland that the level of sucrose might regulate the expressionof sucrose synthase. A discussion of sink capacity is presentedthat includes consideration of structural changes in the hypocotyl. (Received December 14, 1998; Accepted January 27, 1999)  相似文献   

14.
In order to chemically identify the putative indole-3-acetic acid (IAA) and to confirm the native source of auxins account for rapid elongation of the floral stalk of tulip, we examined diffusible IAA from various parts of tulip plant during rapid elongation of the flower stalk. IAA was identified in the diffusates collected from the leaves, internodes, and floral organs with gas chromatography (GC)–mass spectrometry. The amount of diffusible IAA from different plant organs followed the order of that the internodes > flower organs > leaves during the period of rapid elongation of the floral stalk. The diffusible IAA from internodes reached its peak amount at different time than did diffusible IAA from the flower. The results obtained indicated that the top internode is probably the major source of auxins account for rapid elongation of the flower stalk.  相似文献   

15.
Sugarcane sugar and bagasse can be utilized for the production of ethanol or other biofuels. A better understanding of the changes in composition with development along the stalk and with crop development will maximize the usage of sugarcane for this purpose. Two experiments were designed to elucidate internode composition changes during the growing season. In experiment 1, an internode of stalks of 5 modern cultivars were marked at the start of elongation, and then sampled every 1 to 2?weeks from July until October. Sugars were extracted and assayed, and a sequential detergent method was used to estimate hemicellulose, cellulose, and lignin contents. In experiment 2, internodes 1, 3, 5, 7, 9, and 11 down the stalk were sampled in late July (grand growth) and late September (ripening). Internode length, fresh weight, dry weight, water content, and sugar contents were determined as well as cell wall composition. Both experiments were repeated in 2?years. As internodes elongated, total sugar increased, and hemicellulose decreased as a proportion of neutral detergent fiber, while cellulose and lignin increased. After elongation, sucrose and lignin increased, and cellulose content decreased with internode age. The variability in cell wall composition among the five cultivars suggests that selection for desirable composition may be possible. In Experiment 2, hemicellulose contents were lower, and lignin and ash contents were higher at ripening than during grand growth. Delaying sugarcane harvest to maximize sucrose content may decrease bagasse suitability for cellulosic ethanol production because of the increased lignin content.  相似文献   

16.
I Potter  S C Fry 《Plant physiology》1993,103(1):235-241
Xyloglucan endotransglycosylase (XET) activity extractable from internodes of tall and dwarf varieties of pea (Pisum sativum L.) was assayed radiochemically using tamarind seed xyloglucan as donor substrate and an oligosaccharidyl-[3H]alditol as acceptor substrate. Internodes I and II showed little elongation during the period 15 to 21 d after sowing; XET activity remained relatively constant and was unaffected by exogenous gibberellic acid (GA3). A single application of GA3 to the dwarf genotype resulted in a small enhancement of elongation in internode III between d 17 and 21 and caused a small increase in XET activity in internode III. Repeated applications of GA3 caused internode V to elongate between d 20 and 26, to the same extent as in the tall variety, and concomitantly led to greatly elevated XET activity (expressed per unit fresh weight, per unit of extractable protein, and per internode). Thus, XET activity correlated with GA3-enhanced length in pea internodes; the possibility that this represents a causal relationship is discussed.  相似文献   

17.
Water deficit during pollination increases the frequency of kernel abortion in maize (Zea mays L.). Much of the kernel loss is attributable to lack of current photosynthate, but a large number of kernels fail to develop on water-deficient plants even when assimilate supply is increased. We examined the possibility that assimilate utilization by developing ovaries might be impaired at low water potential ([Psi]w). Plants were grown in the greenhouse in 20-L pots containing 22 kg of amended soil. Water was withheld on the first day silks emerged, and plants were hand-pollinated 4 d later when leaf [Psi]w decreased to approximately - 1.8 MPa and silk [Psi]w was approximately -1.0 MPa. Plants were rehydrated 2 d after pollination. The brief water deficit inhibited ovary growth (dry matter accumulation) and decreased kernel number per ear by 60%, compared to controls. Inhibition of ovary growth was associated with a decrease in the level of reducing sugars, depletion of starch, a 75-fold increase in sucrose concentration (dry weight basis), and inhibition of acid invertase (EC 3.2.1.26) activity. These results indicate that water deficits during pollination disrupt carbohydrate metabolism in maize ovaries. They suggest that acid invertase activity is important for establishing and maintaining reproductive sink strength during pollination and early kernel development.  相似文献   

18.
Fruits of orange-fleshed and green-fleshed muskmelon (Cucumis melo L.) were harvested at different times throughout development to evaluate changes in metabolism which lead to sucrose accumulation, and to determine the basis of differences in fruit sucrose accumulation among genotypes. Concentrations of sucrose, raffinose saccharides, hexoses and starch, as well as activities of the sucrose metabolizing enzymes sucrose phosphate synthase (SPS) (EC 2.4.1.14), sucrose synthase (EC 2.4.1.13), and acid and neutral invertases (EC 3.2.1.26) were measured. Sucrose synthase and neutral invertase activities were relatively low (1.7 ± 0.3 micromole per hour per gram fresh weight and 2.2 ± 0.2, respectively) and changed little throughout fruit development. Acid invertase activity decreased during fruit development, (from as high as 40 micromoles per hour per gram fresh weight) in unripe fruit, to undetectable activity in mature, ripened fruits, while SPS activity in the fruit increased (from 7 micromoles per hour per gram fresh weight) to as high as 32 micromoles per hour per gram fresh weight. Genotypes which accumulated different amounts of sucrose had similar acid invertase activity but differed in SPS activity. Our results indicate that both acid invertase and SPS are determinants of sucrose accumulation in melon fruit. However, the decline in acid invertase appears to be a normal function of fruit maturation, and is not the primary factor which determines sucrose accumulation. Rather, the capacity for sucrose synthesis, reflected in the activity of SPS, appears to determine sucrose accumulation, which is an important component of fruit quality.  相似文献   

19.
Developing grains of pearl millet ( Pennisetum typhoides Burm. S & H cv. PIB 155) were sampled and analyzed for starch and its free-sugar precursors. The activities of invertase, sucrose-ADP (UDP) glucosyl transferase and of α-amylase and β-amylase in relation to the rate of starch accumulation in the developing grain were assayed. By culturing detached ears, the incorporation of 14C from free sugar precursors to starch was studied. The starch content gradually increased until grain maturity. The rate of starch accumulation was maximum around 12 days after anthesis. Around this period, the activities of sucrose-ADP(UDP) glucosyl transferase and α-amylase, β-amylase were also at a peak. Invertase activity was high during the early period of grain development but gradually declined as the grains matured. In the most actively metabolising milky grains, incorporation of 14C from [14C]-sugars to starch was maximum in the mid mid-milky grains. Addition of 20 m M K+ to the culture solution did not affect the incorporation of 14C from supplied sucrose to the free sugar pool and to the starch of the grain, but Mg2+ supply at 20 m M concentration lowered 14C incorporation from exogenous sucrose to grain free sugars, although the utilization of the latter for starch synthesis was enhanced.  相似文献   

20.
Subcellular localization of the starch-degrading enzymes in Vicia faba leaves was achieved by an electrophoretic transfer method through a starch-containing gel (SCG) and enzyme activity measurements. Total amylolytic and phosphorolytic activities were found predominantly in the extrachloroplastic fraction, whereas the debranching enzymes showed homogenous distribution between stromal and extrachloroplastic fractions. Staining of end products in the SCG revealed two isoforms of [alpha]-amylase (EC 3.2.1.1) and very low [beta]-amylase activity (EC 3.2.1.2) in the chloroplast preparation, whereas [alpha]- and [beta]-amylase exhibited higher activities in the crude extract. However, it is unclear whether the low [alpha]- and [beta]-amylase activities associated with the chloroplast are contamination or activities that are integrally associated with the chloroplast. Study of the diurnal fluctuation of the starch content and of the amylase activities under a 9-h/15-h photoperiod showed a 2-fold increase of the total amylolytic activity in the chloroplasts concurrent with the starch degradation in the dark. No fluctuation was detectable for the extrachloroplastic enzymes. The possible roles and function of the chloroplastic and extrachloroplastic hydrolytic enzymes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号