首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The protein coding regions of plastid mRNAs in higher plants are generally flanked by 3' inverted repeat sequences. In spinach chloroplast mRNAs, these inverted repeat sequences can fold into stem-loop structures and serve as signals for the correct processing of the mature mRNA 3' ends. The inverted repeat sequences are also required to stabilize 5' upstream mRNA segments, and interact with chloroplast protein in vitro. To dissect the molecular components involved in chloroplast mRNA 3' end processing and stability, a spinach chloroplast protein extract containing mRNA 3' end processing activity was fractionated by FPLC and RNA affinity chromatography. The purified fraction consisted of several proteins and was capable of processing the 3' ends of the psbA, rbcL, petD and rps14 mRNAs. This protein fraction was enriched for a 28 kd RNA-binding protein (28RNP) which interacts with both the precursor and mature 3' ends of the four mRNAs. Using specific antibodies to this protein, the poly(A) RNA-derived cDNA for the 28RNP was cloned and sequenced. The predicted amino acid sequence for the 28RNP reveals two conserved RNA-binding domains, including the consensus sequences RNP-CS1 and CS2, and a novel acidic and glycine-rich N-terminal domain. The accumulation of the nuclear-encoded 28RNP mRNA and protein are developmentally regulated in spinach cotyledons, leaves, root and stem, and are enhanced during light-dependent chloroplast development. The general correlation between accumulation of the 28RNP and plastid mRNA during development, together with the result that depletion of the 28RNP from the chloroplast protein extract interferes with the correct 3' end processing of several chloroplast mRNAs, suggests that the 28RNP is required for plastid mRNA 3' end processing and/or stability.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
The rate of mRNA decay is an important step in the control of gene expression in prokaryotes, eukaryotes and cellular organelles. Factors that determine the rate of mRNA decay in chloroplasts are not well understood. Chloroplast mRNAs typically contain an inverted repeat sequence within the 3 untranslated region that can potentially fold into a stem-loop structure. These stem-loop structures have been suggested to stabilize the mRNA by preventing degradation by exonuclease activity, although such a function in vivo has not been clearly established. Secondary structures within the translation reading frame may also determine the inherent stability of an mRNA. To test the function of the inverted repeat structures in chloroplast mRNA stability mutants were constructed in the psaB gene that eliminated the 3 flanking sequences of psaB or extended the open reading frame into the 3 inverted repeat. The mutant psaB genes were introduced into the chloroplast genome of Chlamydomonas reinhardtii. Mutants lacking the 3 stem-loop exhibited a 75% reduction in the level of psaB mRNA. The accumulation of photosystem I complexes was also decreased by a corresponding amount indicating that the mRNA level is limiting to PsaB protein synthesis. Pulse-chase labeling of the mRNA showed that the decay rate of the psaB mRNA was significantly increased demonstrating that the stem-loop structure is required for psaB mRNA stability. When the translation reading frame was extended into the 3 inverted repeat the mRNA level was reduced to only 2% of wild-type indicating that ribosome interaction with stem-loop structures destabilizes chloroplast mRNAs. The non-photosynthetic phenotype of the mutant with an extended reading frame allowed us to test whether infrequently used stop codons (UAG and UGA) can terminate translation in vivo. Both UAG and UGA are able to effectively terminate PsaB synthesis although UGA is never used in any of the Chlamydomonas chloroplast genes that have been sequenced.  相似文献   

12.
13.
14.
Intracellular sorting of mRNAs is an essential process for regulating gene expression and protein localization. Most mitochondrial proteins are nuclear‐encoded and imported into the mitochondria through post‐translational or co‐translational processes. In the latter case, mRNAs are found to be enriched in the vicinity of mitochondria. A genome‐scale analysis of mRNAs associated with mitochondria has been performed to determine plant cytosolic mRNAs targeted to the mitochondrial surface. Many messengers encoding mitochondrial proteins were found associated with mitochondria. These mRNAs correspond to particular functions and complexes, such as respiration or mitoribosomes, which indicates a coordinated control of mRNA localization within metabolic pathways. In addition, upstream AUGs in 5' untranslated regions (UTRs), which modulate the translation efficiency of downstream sequences, were found to negatively affect the association of mRNAs with mitochondria. A mutational approach coupled with in vivo mRNA visualization confirmed this observation. Moreover, this technique allowed the identification of 3'‐UTRs as another essential element for mRNA localization at the mitochondrial surface. Therefore, this work offers new insights into the mechanism, function and regulation of the association of cytosolic mRNAs with plant mitochondria.  相似文献   

15.
16.
17.
Recently, we and others have reported that mRNAs may be polyadenylated in plant mitochondria, and that polyadenylation accelerates the degradation rate of mRNAs. To further characterize the molecular mechanisms involved in plant mitochondrial mRNA degradation, we have analyzed the polyadenylation and degradation processes of potato atp9 mRNAs. The overall majority of polyadenylation sites of potato atp9 mRNAs is located at or in the vicinity of their mature 3'-extremities. We show that a 3'- to 5'-exoribonuclease activity is responsible for the preferential degradation of polyadenylated mRNAs as compared with non-polyadenylated mRNAs, and that 20-30 adenosine residues constitute the optimal poly(A) tail size for inducing degradation of RNA substrates in vitro. The addition of as few as seven non-adenosine nucleotides 3' to the poly(A) tail is sufficient to almost completely inhibit the in vitro degradation of the RNA substrate. Interestingly, the exoribonuclease activity proceeds unimpeded by stable secondary structures present in RNA substrates. From these results, we propose that in plant mitochondria, poly(A) tails added at the 3' ends of mRNAs promote an efficient 3'- to 5'- degradation process.  相似文献   

18.
Most of the 400 RNA editing sites in flowering plant mitochondria are found in mRNAs. Consequently, the sequence vicinities of homologous sites are highly conserved between different species and are presumably recognized by likewise conserved trans-factors. To investigate the evolutionary adaptation to sequence variation, we have now analyzed the recognition elements of an editing site with divergent upstream sequences in the two species pea and cauliflower. This variation is tolerated at the site selected, because the upstream cis-elements reach into the 5'-UTR of the mRNA. To compare cis-recognition features in pea and cauliflower mitochondria, we developed a new in vitro RNA editing system for cauliflower. In vitro editing assays with deleted and mutated template RNAs show that the major recognition elements for both species are located within the conserved sequence. In cauliflower, however, the essential upstream nucleotides extend further upstream than they do in pea. In-depth analysis of single-nucleotide mutations reveals critical spacing of the editing site and the specific recognition elements, and shows that the +1 nucleotide identity is important in cauliflower, but not in pea.  相似文献   

19.
20.
Human cytomegalovirus (HCMV) lytic DNA replication is initiated at the complex cis-acting oriLyt region, which spans nearly 3 kb. DNA synthesis requires six core proteins together with UL84 and IE2. Previously, two essential regions were identified within oriLyt. Essential region I (nucleotides [nt] 92209 to 92573) can be replaced with the constitutively active simian virus 40 promoter, which in turn eliminates the requirement for IE2 in the origin-dependent transient-replication assay. Essential region II (nt 92979 to 93513) contains two elements of interest: an RNA/DNA hybrid domain and an inverted repeat sequence capable of forming a stem-loop structure. Our studies now reveal for the first time that UL84 interacts with a stem-loop RNA oligonucleotide in vitro, and although UL84 interacted with other nucleic acid substrates, a specific interaction occurred only with the RNA stem-loop. Increasing concentrations of purified UL84 produced a remarkable downward-staircase pattern, which is not due to a nuclease activity but is dependent upon the presence of secondary structures, suggesting that UL84 modifies the conformation of the RNA substrate. Cross-linking experiments show that UL84 possibly changes the conformation of the RNA substrate. The addition of purified IE2 to the in vitro binding reaction did not affect binding to the stem-loop structure. Chromatin immunoprecipitation assays performed using infected cells and purified virus show that UL84 is bound to oriLyt in a region adjacent to the RNA/DNA hybrid and the stem-loop structure. These results solidify UL84 as the potential initiator of HCMV DNA replication through a unique interaction with a conserved RNA stem-loop structure within oriLyt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号