首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetoacetyl-CoA thiolase and 3-hydroxy-3-methylglutaryl coenzyme synthase which comprise the 3-hydroxy-3-methylglutaryl-CoA-generating system(s) for hepatic cholesterogenesis and ketogenesis exhibit dual mitochondrial and cytoplasmic localization. Twenty to forty per cent of the thiolase and synthase of avian and rat liver are localized in the cytoplasmic compartment, the remainder residing in the mitochondria. In contrast, 3-hydroxy-3 methylglutaryl-CoA lyase, an enzyme unique to the "3-hydroxy-3-methylglutaryl-CoA cycle" of ketogenesis, appears to be localized in the mitochondrion. The small proportion, 4 to 8 percent, of this enzyme found in the cytoplasmic fraction appears to arise via leakage from the mitochondria during cell fractionation in that its properties, pI and stability, are identical to those of the mitochondrial lyase. These results are consistent with the view that ketogenesis which involves all three enzymes, acetoacetyl-CoA thiolase, 3-hydroxy-3-methylglutaryl-CoA synthase and 3-hydroxy-3-methylglutaryl-CoA lyase, occurs exclusively in the mitochondrion, whereas cholesterogenesis, a pathway which involves only the 3-hydroxy-3-methylglutaryl-CoA synthesizing enzymes, is restricted to the cytoplasm. Further fractionation of isolated mitochondria from chicken and rat liver showed that all three of the 3-hydroxy-3-methylglutaryl-CoA cycle enzymes are soluble and are localized within the matrix compartment of the mitochondrion. Likewise, cytoplasmic acetoacetyl-CoA thiolase and 3-hydroxy-3-methylglutaryl-CoA synthase are soluble cytosolic enzymes, no thiolase or synthase activity being detectable in the microsomal fraction. Chicken liver mitochondrial 3-hydroxy-3methylglutaryl-CoA synthase activity consists of a single enzymic species with a pI of 7.2, whereas the cytoplasmic activity is composed of at least two species with pI values of 4.8 and 6.7. Thus it is evident that the mitochondrial and cytoplasmic species are molecularly distinct as has been shown to be the case for the mitochondrial and cytoplasmic acetoacetyl-CoA thiolases from avian liver (Clinkenbeard, K. D., Sugiyama, T., Moss, J., Reed, W. D., and Lane, M. D. (1973) J. Biol. Chem. 248, 2275). Substantial mitochondrial 3-hydroxy-3-methylglutaryl-CoA lyase activity is present in all tissues surveyed, while only liver and kidney possess significant mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase activity. Therefore, it is proposed that tissues other than liver and kidney are unable to generate acetoacetate because they lack the mitochondrial synthase.  相似文献   

2.
C-6 glioma cells, grown in medium supplemented with 5% delipidated foetal calf serum, were induced to enter a quiescent state by removing serum from the medium. Within 24h there was a 75–80% decline in the rate of incorporation of [14C]acetate or 3H2O into digitonin-precipitable sterols. Experiments with [3H]mevalonolactone as a labelled sterol precursor suggested that the decline in sterol synthesis was regulated primarily at a point in the pathway before the formation of mevalonate. The specific activities of 3-hydroxy-3-methylglutaryl-CoA synthase and 3-hydroxy-3-methylglutaryl-CoA reductase decreased sharply in conjunction with the decline in sterol synthesis in the serum-free cultures; however, the activity of acetoacetyl-CoA thiolase was altered only slightly. The magnitude of the initial decline in reductase activity was not affected when 50-mm-NaF was included in the preincubation and assay buffers to prevent activation of physiologically inactive enzyme. However, after 6h of serum deprivation the decline in 3-hydroxy-3-methylglutaryl-CoA reductase activity was due to a decrease in the amount of latent activity. The sterol concentration in C-6 cells was unchanged after 24h in serum-free medium, although a 20% decrease in the sterol/fatty acid molar ratio occurred as a result of a small increase in the fatty-acid concentration. Incorporation of 3H2O into fatty acids was inhibited in the serum-deprived glial cells; however, this inhibition developed more slowly and was not as pronounced as the diminution in sterol synthesis. The results suggest that in C-6 glia, which resemble the glial stem cells of the developing brain, the decreased demand for membrane sterols in the quiescent state results in a decline in sterol synthesis, mediated primarily through co-ordinate changes in the activities of 3-hydroxy-3-methylglutaryl-CoA synthase and 3-hydroxy-3-methylglutaryl-CoA reductase.  相似文献   

3.
Rat hepatocytes isolated by the procedure described here showed 3-hydroxy-3-methylglutaryl-CoA reductase activity in the range of that reported for rat liver at the maximum of the circadian cycle, even if they were taken from rats at the time of the minimum. The enzyme was present in cells as both its active dephosphorylated (20 +/- 8%) and the inactive phosphorylated forms. The enzyme activity and the ratio between the two forms were unaltered during 3 h of cell incubation. 25-Hydroxycholesterol (50 microM) induced about 50% inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase activity during 1 h incubation but the relative amount of the two forms was not modified by the sterol. Cells isolated by the described procedure may therefore be a useful tool in studies on the regulation of cholesterol neogenesis, both through the synthesis of the enzyme, which can be shown by measuring the activity after complete dephosphorylation of the enzyme, and via the rapid reversible shift of the inactive to the active form, resulting from the ratio between the two enzyme forms. The latter mechanism for the modulation of cholesterol synthesis cannot be tested in cell cultures because full activation of the enzyme occurs during hepatocyte plating.  相似文献   

4.
Isolated rat hepatocytes converted mevalonolactone into sterol intermediates and fatty acids 6- to 8-fold faster than mevalonate salt at concentrations less than 6 X 10(-4) M. Incubation of hepatocytes for 3 h normally results in induction of 3-hydroxy-3-methylglutaryl-CoA reductase. This increase in enzyme activity was inhibited by mevalonolactone and by mevalonate salt; at each concentration between 6 X 10(-4) M and 6 X 10(-8) M the lactone was a more effective inhibitor than the salt. The increase in enzyme activity was completely prevented by 6 X 10(-4) M lactone, and at this concentration the cells synthesized from the lactone an amount of sterol per hour which approximated that leavingthe cells in the same period. Administration of mevalonolactone to intact rats resulted in a dose-dependent inhibition of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity. At the highest dose (400 mg of (RS)-mevalonolactone/200 g of rat) enzyme activities declined 85% within 45 min and were still suppressed below normals after 28 h. Mevalonolactone treatment resulted in increases in liver cholesterol content and in the cholesterol ester concentration of liver microsomes. The results demonstrate that the activity of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase can be controlled by the rate of endogenous sterol synthesis both in vitro and in vivo.  相似文献   

5.
Pregnant rats were given pharmacological doses of cortisol or ACTH or no hormone from gestation day 9 to 19 and maternal and fetal hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity and plasma cholesterol studied on gestation day 20. Reductase activity was also studied in the maternal and fetal adrenal of the rats given cortisol or no hormone. Cortisol administration increased the maternal and fetal plasma cholesterol but had no effect on the hepatic active (phosphorylated) 3-hydroxy-3-methylglutaryl-CoA reductase activity when compared to untreated rats. Total (active + inactive) 3-hydroxy-3-methylglutaryl-CoA reductase activity, however, was reduced in maternal liver but not altered in the fetal liver by cortisol. The maternal cortisol treatment decreased the fetal, but not maternal, adrenal 3-hydroxy-3-methylglutaryl-CoA reductase total enzyme activity. The data support a hypothesis that utilization of plasma cholesterol for adrenal steroidogenesis may be an important determinant of plasma cholesterol homeostasis in the rat fetus. Maternal ACTH administration increased the foetal but not maternal plasma cholesterol, whilst active 3-hydroxy-3-methylglutaryl-CoA reductase activity was increased in the pregnant rat but not her fetuses. This result may suggest coordination of hepatic active reductase activity with adrenal cholesterol utilization in the pregnant rat. The reason for the fetal hypercholesterolaemia caused by ACTH, which is not known to cross the placenta, is uncertain. The studies, however, indicate that fetal cholesterol homeostasis and the rate limiting enzyme of cholesterol synthesis is influenced by maternal glucocorticoid administration.  相似文献   

6.
Abstract: Data are provided indicating that the rat brain 3-hydroxy-3-methyl-glutaryl-CoA reductase is similar to the enzyme from other tissues as far as diurnal rythmicity, cold lability and half-life measurements at 0°C are concerned. The enzyme activity in the brain decreased with age of the animals. Subcellular fractionation studies demonstrate that while 77% of the activity was associated with the microsomal fraction, 19% of the enzyme activity was recovered in the mitochondrial fraction. The possible function of such a mitochondrially located 3-hydroxy-3-methylglutaryl-CoA reductase in rat brain is discussed.  相似文献   

7.
The regulation of 3-hydroxy-3-methylglutarylcoenzyme A reductase and acylcoenzyme A: cholesterol acyltransferase activities by phosphorylation-dephosphorylation in rabbit intestine was studied in vitro. Preparing intestinal microsomes in the presence of 50 mM NaF caused a 64% decrease in the reductase activity. It had no effect on acyl-CoA: cholesterol acyltransferase activity. Microsomes that were prepared in NaF were incubated with intestinal cytosol, a partially purified phosphatase from cytosol, and Escherichia coli alkaline phosphatase. All three preparations increased 3-hydroxy-3-methylglutaryl-CoA reductase by two- or three-fold suggesting dephosphorylation and ‘reactivation’ of enzyme activity. Cytosol caused a 78% increase in acyl-CoA: cholesterol acyltransferase activity, but neither the partially purified phosphatase nor the E. coli alkaline phosphatase affected the acyltransferase activity. Microsomes incubated with increasing concentrations of MgCl2 and ATP decreased both the activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acylcoenzyme A: cholesterol acyltransferase in a step-wise fashion. Whereas this inhibitory effect was specific for reductase, the effect on acyl-CoA: cholesterol acyltransferase activity was secondary to the presence of ATP in the assay mixture. The 8500×g supernatant of intestinal whole homogenate from isolated intestinal cells or scraped mucosa was incubated with MgCl2, ATP and NaF. In microsomes prepared from this supernatant, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase was significantly decreased. Again, no change was observed in the acyltransferase activity. The rate of cholesterol esterification in isolated intestinal cells was not affected by 0.1 mM cAMP or 50 mM NaF. We conclude that under conditions which regulate 3-hydroxy-3-methylglutaryl-CoA reductase activity in rabbit intestine by phosphorylation-dephosphorylation, no regulation of acyl-CoA: cholesterol acyltransferase activity is observed.  相似文献   

8.
A somatic cell mutant of the CHO-K1 cell selected to be resistant to the killing effects of 25-hydroxycholesterol in the absence of cholesterol is shown to be defective in the inhibition of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity by 25-hydroxycholesterol, cholesterol, and lipoproteins, thus maintaining the enzyme activity found in cells in the absence of exogenous sterol constitutively. The mutants phenotype is shown to be dominant with respect to the wild type. Actinomycin D and cycloheximide prevent the increase of HMG-CoA reductase activity that occurs in the CHO-K1 cell when cholesterol is removed from medium. Degradation of the enzyme, measured during inhibition of protein synthesis by cycloheximide, occurs at the same rate in the mutant as in the wild type. Kinetic studies indicate that the Km for two substrates, the activation energy, and a break in the Arrhenius plot are the same for HMG-CoA reductase determined in wild type and mutant cells. From these studies it is concluded that the mutant is defective in the regulation of synthesis of HMG-CoA reductase. Of the four processes which determine cellular cholesterol levels: biosynthesis, esterification, efflux, and uptake, only biosynthesis is altered, demonstrating that these processes are not co-ordinately controlled as has been suggested previously.  相似文献   

9.
Addition of cell wall fragments from Phytophthora species or cellulase from Trichoderma viride, but not pectolyase from Aspergillus japonicus, to tobacco (Nicotiana tabacum) cell suspension cultures induced the accumulation of the extracellular sesquiterpenoid capsidiol. Pulse-labeling experiments with [14C]acetate and [3H]mevalonate suggested that enzymatic steps preceding mevalonate were limiting capsidiol biosynthesis in the pectolyase-treated cell cultures. Treatment of the cell cultures with either Phytophthora cell wall fragments or cellulase induced 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and sesquiterpene cyclase activities, enzymes of the sesquiterpene biosynthetic pathway, and phenylalanine ammonia lyase activity, an enzyme of the general phenylpropanoid pathway. Pectolyase treatment induced sesquiterpene cyclase and phenylalanine ammonia lyase activities, but not HMGR activity. These results corroborate the importance of inducible HMGR enzyme activity for sesquiterpene accumulation.  相似文献   

10.
A new method suitable for measuring rat liver 3-hydroxy-3-methylglutaryl-CoA reductase activity is described and its advantages over methods previously available are discussed. An accurate time course was measured for the inhibition of liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase activity by dietary cholesterol; this enzyme was affected 1 1/4 h after the rats began to consume a cholesterol-rich diet. In this experiment there was no correlation between concentrations of microsomal cholesterol ester and the activity of 3-hydroxy-3-methylglutary-CoA reductase.  相似文献   

11.
Abstract: We have previously identified cerebellum to contain significantly higher levels, compared with other brain regions, of the mRNA encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHS). In this report, we extend these observations, using primary cultures of cerebellar astrocytes and cerebellar granule neurons, and show that mHS mRNA was not readily detected in these cell types, suggesting that other cerebellar cell types account for mHS mRNA abundances observed in cerebellum. In contrast, we report, for the first time, the ready detection of mHS mRNA together with the mRNAs encoding the remaining enzymes of the 3-hydroxy-3-methylglutaryl-CoA cycle, namely, mitochondrial acetoacetyl-CoA thiolase and 3-hydroxy-3-methylglutaryl-CoA lyase, in primary cultures of neonatal meningeal fibroblasts. Based on observations of the effects of fetal calf serum in the culture medium and the documented effects of various hormones on mHS mRNA levels in liver, we show that the glucocorticoid hydrocortisone effects a selective fourfold increase in mHS mRNA abundances in both neonatal meningeal fibroblasts and neonatal cortical astrocytes cultured in a serum-free/hormone-free medium.  相似文献   

12.
The regulation of 3-hydroxy-3-methylglutarylcoenzyme A reductase and acylcoenzyme A:cholesterol acyltransferase activities by phosphorylation-dephosphorylation in rabbit intestine was studied in vitro. Preparing intestinal microsomes in the presence of 50 mM NaF caused a 64% decrease in the reductase activity. It had no effect on acyl-CoA:cholesterol acyltransferase activity. Microsomes that were prepared in NaF were incubated with intestinal cytosol, a partially purified phosphatase from cytosol, and Escherichia coli alkaline phosphatase. All three preparations increased 3-hydroxy-3-methylglutaryl-CoA reductase by two- or three-fold suggesting dephosphorylation and 'reactivation' of enzyme activity. Cytosol caused a 78% increase in acyl-CoA:cholesterol acyltransferase activity, but neither the partially purified phosphatase nor the E. coli alkaline phosphatase affected the acyltransferase activity. Microsomes incubated with increasing concentrations of MgCl2 and ATP decreased both the activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acylcoenzyme A:cholesterol acyltransferase in a step-wise fashion. Whereas this inhibitory effect was specific for reductase, the effect on acyl-CoA:cholesterol acyltransferase activity was secondary to the presence of ATP in the assay mixture. The 8500 X g supernatant of intestinal whole homogenate from isolated intestinal cells or scraped mucosa was incubated with MgCl2, ATP and NaF. In microsomes prepared from this supernatant, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase was significantly decreased. Again, no change was observed in the acyltransferase activity. The rate of cholesterol esterification in isolated intestinal cells was not affected by 0.1 mM cAMP or 50 mM NaF. We conclude that under conditions which regulate 3-hydroxy-3-methylglutaryl-CoA reductase activity in rabbit intestine by phosphorylation-dephosphorylation, no regulation of acyl-CoA:cholesterol acyltransferase activity is observed.  相似文献   

13.
The regulation of 3-hydroxy-3-methylglutaryl-CoA reductase was studied in mouse uterine epithelium. The enzyme was rapidly inactivated during incubation with ATP/Mg2+ in vitro, and could be re-activated by incubation with partially purified rat liver phosphoprotein phosphatase. Enzyme activity was rapidly inhibited by mevalonate injection in vivo to approx. 30% of control. The percentage of total enzyme active in vivo was measured by inclusion of NaF in the isolation buffers. The percentage of enzyme active in vivo 18 h after stimulation by oestrogens remained at approx. 25% after inhibition of activity by mevalonate injection, cholesterol feeding or progesterone pretreatment. However, 9 h after oestrogen stimulation, cholesterol feeding inhibited enzyme activity to 57% of control, 94% of which was in the active form. We conclude that, although all components for a reversible phosphorylative regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity are present in uterine epithelial cells, a role in the rapid changes in epithelial enzyme activity has not been demonstrated.  相似文献   

14.
The demyelination of peripheral nerves that results from exposure of developing rats to tellurium is due to inhibition of squalene epoxidase, a step in cholesterol biosynthesis. In sciatic nerve, cholesterol synthesis is greatly depressed, whereas in liver, some compensatory mechanism maintains normal levels of cholesterol synthesis. This tissue specificity was further explored by examining, in various tissues, gene expression and enzyme activity of 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme in cholesterol biosynthesis. Exposure to tellurium resulted in pronounced increases in both message levels and enzyme activity in liver, the expected result consequent to up-regulation of this enzyme in response to decreasing levels of intracellular sterols. In contrast to liver, levels of mRNA and enzyme activity in sciatic nerve were both decreased during the tellurium-induced demyelinating period. The temporal pattern of changes in 3-hydroxy-3-methylglutaryl-CoA reductase message levels in sciatic nerve seen following exposure to tellurium was similar to the down-regulation seen for mRNA specific for PNS myelin proteins. Possible mechanisms for differential control of cholesterol biosynthesis in sciatic nerve and liver are discussed.  相似文献   

15.
Dietary cholesterol lowers the activity of rat liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase without affecting various other liver microsomal enzymes. This is consistent with a specific regulatory mechanism and distinguishes the action of cholesterol on 3-hydroxy-3-methylglutaryl-CoA reductase from that of at least one other stimulus known to affect this enzyme.  相似文献   

16.
Dietary cholesterol lowers the activity of rat liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase without affecting various other liver microsomal enzymes. This is consistent with a specific regulatory mechanism and distinguishes the action of cholesterol on 3-hydroxy-3-methylglutaryl-CoA reductase from that of at least one other stimulus known to affect this enzyme.  相似文献   

17.
Characteristics of 3-hydroxy-3-methylglutaryl-CoA reductase from normal liver, Morris hepatomas 5123C, 5123t.c. and 9618A, and host liver were studied. Animals were fed on control and 5%-cholesterol diets. Microsomal membranes from all tissues were found to accumulate cholesterol after 3 days on the 5%-cholesterol diet. The enzyme of the tumours showed no feedback inhibition by dietary cholesterol, and that of host liver gave a variable response, whereas that of control liver was constantly inhibited by 90% or more. Arrhenius-plot analysis was conducted on the microsomal enzyme isolated from the various tissues. Control animals showed that the phase transition present at 27 degrees C was removed when animals were fed on 5%-cholesterol diet for 12 h. The hepatomas failed to show this change even after 3 days of 5%-cholesterol diet and a significant increase in microsomal cholesterol. This failure to remove the break in Arrhenius plots also occurred in host liver, even though enzyme inhibition occurred. The reason why hepatomas fail to regulate 3-hydroxy-3-methylglutaryl-CoA reductase activity in response to dietary cholesterol may be a decreased membrane-enzyme interaction.  相似文献   

18.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase from rat liver microsomes has been purified to apparent homogeneity with recoveries of approximately 50%. The enzyme obtained from rats fed a diet supplemented with cholestyramine had specific activities of approximately 21,500 nmol of NADPH oxidized/min/mg of protein. After amino acid analysis a specific activity of 31,000 nmol of NADPH oxidized/min/mg of amino acyl mass was obtained. The s20,w for HMG-CoA reductase was 6.14 S and the Stokes radius was .39 nm. The molecular weight of the enzyme was 104,000 and the enzyme subunit after sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 52,000. Antibodies prepared against the homogeneous enzyme specifically precipitated HMG-CoA reductase from crude and pure fractions of the enzyme. Incubation of rat hepatocytes for 3 h in the presence of lecithin dispersions, compactin, or rat serum resulted in significant increases in the specific activity of the microsomal bound reductase. Immunotitrations indicated that in all cases these increases were associated with an activated form of the reductase. However activation of the enzyme accounted for only a small percentage of the total increase in enzyme activity; the vast majority of the increase was apparently due to an increase in the number of enzyme molecules. In contrast, when hepatocytes were incubated with mevalonolactone the lower enzyme activity which resulted was primarily due to inactivation of the enzyme with little change in the number of enzyme molecules. Immunotitrations of microsomes obtained from rats killed at the nadir or peak of the diurnal rhythm of 3-hydroxy-3-methylglutaryl-CoA reductase indicated that the rhythm results both from enzyme activation and an increased number of reductase molecules.  相似文献   

19.
The functional molecular weight of rat liver 3-hydroxy-3-methylglutaryl-CoA reductase was determined by radiation inactivation. Both isolated hepatic microsomes and primary hepatocytes were irradiated with high energy electrons at -135 degrees C, and the residual microsomal enzyme activity was subsequently determined. The loss of enzyme activity in both irradiated microsomes and microsomes isolated from irradiated hepatocytes followed a single exponential decay which corresponded to a molecular mass of 200 kDa. This minimal molecular size of the functional enzyme was unaffected by either addition of cholestyramine to the rat diet or addition of 25-hydroxycholesterol plus mevalonate to the isolated rat hepatocytes. In addition, surviving enzyme protein was determined by immunoprecipitation of radiolabeled enzyme from hepatocytes that had been incubated with [35S]methionine before irradiation. The target size for loss of the monomer subunits was 98 kDa. The simplest interpretation of these results is that rat liver 3-hydroxy-3-methylglutaryl-CoA reductase in situ is a noncovalently linked dimer of the Mr = 97,200 enzyme subunit.  相似文献   

20.
A procedure for the preparation of rat liver microsomal fractions essentially devoid of contaminating lysosomes is described. When this preparation was examined by immunoblotting with a rabbit antiserum to rat 3-hydroxy-3-methylglutaryl-CoA reductase, a single band corresponding to an Mr of 100000 was observed. No evidence was found for glycosylation of rat liver-3-hydroxy-3-methylglutaryl-CoA reductase. Native rat liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase differs from the purified proteolytically modified species in that it displays allosteric kinetics towards NADPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号