首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
PPAR家族及其与代谢综合征的关系   总被引:17,自引:0,他引:17  
过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors,PPARs)是配体激活的转录因子核受体超家族成员之一。目前已知有三种亚型:PPARα、-β/δ和-γ。它们在脂肪生成、脂质代谢、胰岛素敏感性、炎症和血压调节中起着关键作用,因而近年来倍受关注。越来越多的研究表明,PPARs与代谢综合征,包括胰岛素抵抗、糖耐量受损、2型糖尿病、肥胖、高脂血症、高血压病、动脉粥样硬化和蛋白尿之间存在因果关系。重要的是,PPARα的激动剂如贝丁酸类降脂药(Fibrate)和PPARγ的激动剂如噻唑烷二酮(Thiazolidinedione,TZD)均已被证实有改善代谢综合征的作用。此外,三种PPAR亚型在2型糖尿病及糖尿病肾病的发展中均有重要作用。不断增加的证据提示,PPARs有可能成为代谢综合征及其相关并发症的潜在治疗靶点。本文将就PPARs的生物学活性、配体选择性和生理学功能作一综述,并对其在代谢综合征发病机制中的作用和PPAR配体对2型糖尿病的治疗效用进行重点讨论。  相似文献   

4.
Peroxisome proliferator-activated receptor (PPAR) beta-null mice exhibit exacerbated epithelial cell proliferation and enhanced sensitivity to skin carcinogenesis, suggesting that ligand activation of PPARbeta will inhibit keratinocyte proliferation. By using of a highly specific ligand (GW0742) and the PPARbeta-null mouse model, activation of PPARbeta was found to selectively induce keratinocyte terminal differentiation and inhibit keratinocyte proliferation. Additionally, GW0742 was found to be anti-inflammatory due to inhibition of myeloperoxidase activity, independent of PPARbeta. These data suggest that ligand activation of PPARbeta could be a novel approach to selectively induce differentiation and inhibit cell proliferation, thus representing a new molecular target for the treatment of skin disorders resulting from altered cell proliferation such as psoriasis and cancer.  相似文献   

5.
6.
Peroxisome proliferator-activated receptor gamma (PPARγ) has been implicated in the pathology of numerous diseases involving diabetes, stroke, cancer, or obesity. It is expressed in diverse cell types, including vessels, immune and glial cells, and neurons. PPARγ plays crucial roles in the regulation of cellular differentiation, lipid metabolism, or glucose homeostasis. PPARγ ligands also exert effects on attenuating degenerative processes in the brain, as well as in peripheral systems, and it has been associated with the control of anti-inflammatory mechanisms, oxidative stress, neuronal death, neurogenesis, differentiation, and angiogenesis. This review will highlight key advances in the understanding of the PPARγ-related mechanisms responsible for neuroprotection after brain injuries, both ischemia and traumatic brain injury, and it will also cover the natural and synthetic agonist for PPARγ, angiotensin receptor blockers, and PPARγ antagonists, used in experimental and clinical research. A better understanding of the pleiotropic mechanisms and applications of these drugs to improve the recovery and to repair the acute and chronic induced neuroinflammation after brain injuries will pave the way for more effective therapeutic strategies after brain deficits.  相似文献   

7.
8.
PPAR expression and function during vertebrate development   总被引:11,自引:0,他引:11  
The peroxisome proliferator activated receptors (PPARs) are ligand activated receptors which belong to the nuclear hormone receptor family. As with other members of this superfamily, it is thought that the ability of PPAR to bind to a ligand was acquired during metazoan evolution. Three different PPAR isotypes (PPARalpha, PPARbeta, also called 6, and PPARgamma) have been identified in various species. Upon binding to an activator, these receptors stimulate the expression of target genes implicated in important metabolic pathways. The present article is a review of PPAR expression and involvement in some aspects of Xenopus laevis and rodent embryonic development. PPARalpha and beta are ubiquitously expressed in Xenopus early embryos but become more tissue restricted later in development. In rodents, PPARalpha, PPARbeta and PPARgamma show specific time- and tissue-dependent patterns of expression during fetal development and in the adult animals. PPARs are implicated in several aspects of tissue differentiation and rodent development, such as differentiation of the adipose tissue, brain, placenta and skin. Particular attention is given to studies undertaken by us and others on the implication of PPARalpha and beta in rodent epidermal differentiation.  相似文献   

9.
10.
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that modulate target gene expression in response to fatty acid ligands. Their regulation by post-translational modifications has been reported but is poorly understood. In the present study, we investigated whether ligand binding affects the turnover and ubiquitination of the PPARbeta subtype (also known as PPARdelta). Our data show that the ubiquitination and degradation of PPARbeta is not significantly influenced by the synthetic agonist GW501516 under conditions of moderate PPARbeta expression. By contrast, the overexpression of PPARbeta dramatically enhanced its degradation concomitant with its polyubiquitination and the formation of high molecular mass complexes containing multiple, presumably oligomerized PPARbeta molecules that lacked stoichiometical amounts of the obligatory PPARbeta dimerization partner, retinoid X receptor. The formation of these apparently aberrant complexes, as well as the ubiquitination and destabilization of PPARbeta, were strongly inhibited by GW501516. Our findings suggest that PPARbeta is subject to complex post-translational regulatory mechanisms that partly may serve to safeguard the cell against deregulated PPARbeta expression. Furthermore, our data have important implications regarding the widespread use of overexpression systems to evaluate the function and regulation of PPARs.  相似文献   

11.
To investigate the role of peroxisome proliferator-activated receptors (PPARs) alpha and beta in the differentiation of colon cancer cells, we differentiated HT-29 cells using sodium butyrate (NaB) and culturing post-confluence and assessed differentiation using the marker intestinal alkaline phosphatase. While PPARalpha levels only changed with culturing post confluence, PPARbeta levels increased independent of the method of differentiation. To explore further the differences induced by NaB, we assessed changes in both PPAR isoforms in MCF-7 breast cancer cells cultured in the presence of NaB over 48h. Again a very different expression pattern was observed with PPARalpha increasing after 4h and remaining elevated, while PPARbeta increased transiently. Our studies suggest that the expression of PPARs is dependent upon both the method of differentiation and on time. Moreover, these studies show that changes in PPARalpha levels are not required for the differentiation of colon cancer cell lines, whereas changes in PPARbeta are more closely associated with differentiation.  相似文献   

12.
13.
14.
15.
Lin S  Han Y  Shi Y  Rong H  Zheng S  Jin S  Lin SY  Lin SC  Li Y 《Cell research》2012,22(4):746-756
Peroxisome proliferator-activated receptor gamma (PPARγ) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPARγ agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPARγ target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPARγ ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPARγ ligands in the treatment of insulin resistance.  相似文献   

16.
The role of PPARs in atherosclerosis   总被引:4,自引:0,他引:4  
  相似文献   

17.
We show here that the alpha, beta, and gamma isotypes of peroxisome proliferator-activated receptor (PPAR) are expressed in the mouse epidermis during fetal development and that they disappear progressively from the interfollicular epithelium after birth. Interestingly, PPARalpha and beta expression is reactivated in the adult epidermis after various stimuli, resulting in keratinocyte proliferation and differentiation such as tetradecanoylphorbol acetate topical application, hair plucking, or skin wound healing. Using PPARalpha, beta, and gamma mutant mice, we demonstrate that PPARalpha and beta are important for the rapid epithelialization of a skin wound and that each of them plays a specific role in this process. PPARalpha is mainly involved in the early inflammation phase of the healing, whereas PPARbeta is implicated in the control of keratinocyte proliferation. In addition and very interestingly, PPARbeta mutant primary keratinocytes show impaired adhesion and migration properties. Thus, the findings presented here reveal unpredicted roles for PPARalpha and beta in adult mouse epidermal repair.  相似文献   

18.
Little is known about the mechanisms responsible for the fall in fatty acid oxidation during the development of cardiac hypertrophy. We focused on the effects of nuclear factor (NF)-kappaB activation during cardiac hypertrophy on the activity of peroxisome proliferator-activated receptor (PPAR) beta/delta, which is the predominant PPAR subtype in cardiac cells and plays a prominent role in the regulation of cardiac lipid metabolism. Phenylephrine-induced cardiac hypertrophy in neonatal rat cardiomyocytes caused a reduction in the expression of pyruvate dehydrogenase kinase 4 (Pdk4), a target gene of PPARbeta/delta involved in fatty acid utilization, and a fall in palmitate oxidation that was reversed by NF-kappaB inhibitors. Lipopolysaccharide stimulation of NF-kappaB in embryonic rat heart-derived H9c2 myotubes, which only express PPARbeta/delta, caused both a reduction in Pdk4 expression and DNA binding activity of PPARbeta/delta to its response element, effects that were reversed by NF-kappaB inhibitors. Coimmunoprecipitation studies demonstrated that lipopolysaccharide strongly stimulated the physical interaction between the p65 subunit of NF-kappaB and PPARbeta/delta, providing an explanation for the reduced activity of PPARbeta/delta. Finally, we assessed whether this mechanism was present in vivo in pressure overload-induced cardiac hypertrophy. In hypertrophied hearts of banded rats the reduction in the expression of Pdk4 was accompanied by activation of NF-kappaB and enhanced interaction between p65 and PPARbeta/delta. These results indicate that NF-kappaB activation during cardiac hypertrophy down-regulates PPARbeta/delta activity, leading to a fall in fatty acid oxidation, through a mechanism that involves enhanced protein-protein interaction between the p65 subunit of NF-kappaB and PPARbeta/delta.  相似文献   

19.
The physiological and pharmacological roles of peroxisome proliferator-activated receptor-beta (PPARbeta-also referred to as PPARdelta) are just beginning to emerge. It has recently become clear that PPARbeta has a function in epithelial tissues, but controversy exists due to inconsistencies in the literature. There is strong evidence that ligand activation of PPARbeta can induce terminal differentiation of keratinocytes, with a concomitant inhibition of cell proliferation. However, the role of PPARbeta in keratinocyte-specific apoptosis is less clear. Additionally, the role of PPARbeta in colonic epithelium remains unclear due to conflicting evidence suggesting that ligand activation of PPARbeta can potentiate, as well as attenuate, intestinal cancer. Recent studies revealed that ligand activation of PPARbeta can induce fatty acid catabolism in skeletal muscle and is associated with improved insulin sensitivity, attenuated weight gain and elevated HDL levels thus demonstrating promising potential for targeting PPARbeta for treating obesity, dyslipidemias and type 2 diabetes. Therefore, it becomes critical to determine the safety of PPARbeta ligands. This review focuses on recent literature describing the role of PPARbeta in epithelial tissues and highlights critical discrepancies that need to be resolved for a more comprehensive understanding of how this receptor modulates epithelial homeostasis.  相似文献   

20.
Parkinson's disease (PD) is a progressive and chronic neurodegenerative disorder, characterized by progressive loss of dopaminergic neurons in substantia nigra. The etiology and pathogenesis of PD is still elusive, however, a large body of evidence suggests a prominent role of oxidative stress, inflammation, apoptosis, mitochondrial dysfunction and proteosomal dysfunction in the pathogenesis of PD. Due to multifactorial nature of the disease, currently available drug therapy cannot halt / slow down the disease progression, and only provides symptomatic relief. Peroxisome proliferator-activated receptor (PPAR), a member of nuclear receptor superfamily, regulates development, tissue differentiation, inflammation, mitochondrial function, wound healing, lipid metabolism and glucose metabolism. Recently, several PPAR agonists were shown to exert neuroprotective activity against oxidative damage, inflammation and apoptosis in several neurodegenerative disorders including Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis and multiple sclerosis. Similarly, regular intake of PPAR activating non-steroidal anti-inflammatory drugs such as indomethacin and ibuprofen was associated with reduced incidence and progression of neurodegenerative disorders in several epidemiological studies. In this article, we review studies relating to the neuroprotective effect of PPAR agonists in in vitro and in vivo models of PD. Similarly, the pharmacological mechanism in neuroprotective actions of PPAR agonists is also reviewed. In conclusion, PPAR agonists exert neuroprotective actions by regulating the expression of a set of genes involved in cell survival processes, and could be a therapeutic target in debilitating neurodegenerative illnesses such as PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号