首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae strains that respond to environmental changes and transmit the information by emission of fluorescence from the cell surface were constructed. The technique of cell surface engineering enabled the yeast cells to display enhanced cyan blue fluorescent protein (ECFP) or enhanced yellow fluorescent protein (EYFP) on the surface under the control of promoters that sense environmental changes. Two model promoters were examined in this study. For monitoring the intra- and extracellular concentrations of phosphate ion, the PHO5 promoter was chosen to display ECFP. The MEP2 promoter was used to display EYFP to sense the concentrations of ammonium ion. Fluorescence was observed by fluorescence microscopy and immunofluorescence microscopy, and the intensity was measured by a flow cytometer. The relationship between ion concentration inside and outside the cells was evaluated by the change in the rate of fluorescence. This S. cerevisiae system enables environmental changes to be transmitted as intra- and extracellular information using a suitable promoter functioning at real time and in a non-invasive manner.  相似文献   

2.
Using a cross-linking approach, we have analyzed the function of Skp, a presumed molecular chaperone of the periplasmic space of Escherichia coli, during the biogenesis of an outer membrane protein (OmpA). Following its transmembrane translocation, OmpA interacts with Skp in close vicinity to the plasma membrane. In vitro, Skp was also found to bind strongly and specifically to pOmpA nascent chains after their release from the ribosome suggesting the ability of Skp to recognize early folding intermediates of outer membrane proteins. Pulse labeling of OmpA in spheroplasts prepared from an skp null mutant revealed a specific requirement of Skp for the release of newly translocated outer membrane proteins from the plasma membrane. Deltaskp mutant cells are viable and show only slight changes in the physiology of their outer membranes. In contrast, double mutants deficient both in Skp and the periplasmic protease DegP (HtrA) do not grow at 37 degrees C in rich medium. We show that in the absence of an active DegP, a lack of Skp leads to the accumulation of protein aggregates in the periplasm. Collectively, our data demonstrate that Skp is a molecular chaperone involved in generating and maintaining the solubility of early folding intermediates of outer membrane proteins in the periplasmic space of Gram-negative bacteria.  相似文献   

3.
Expression of single-chain antibody fragments (scAb)in the periplasm of Escherichia coli often results in low soluble product yield and cell lysis. We have increased scAb solubility and prevented cell culture lysis by coexpressing the E. coli Skp chaperone gene. A mutant Skp cistron was linked to a bacteriophage T7 gene 10 translational initiation region and placed either downstream of a scAb gene within an isopropyl beta-d-thiogalactopyranoside-inducible expression cassette or on a separate colE1-compatible arabinose-inducible vector. Increases in scAb solubility reflected the amount of coexpressed Skp. A bacteriophage display vector that was also engineered to coexpress Skp permitted display of a virtually undisplayable scAb and should prove useful in expanding library sizes.  相似文献   

4.
We have studied the folding pathway of a beta-barrel membrane protein using outer membrane protein A (OmpA) of Escherichia coli as an example. The deletion of the gene of periplasmic Skp impairs the assembly of outer membrane proteins of bacteria. We investigated how Skp facilitates the insertion and folding of completely unfolded OmpA into phospholipid membranes and which are the biochemical and biophysical requirements of a possible Skp-assisted folding pathway. In refolding experiments, Skp alone was not sufficient to facilitate membrane insertion and folding of OmpA. In addition, lipopolysaccharide (LPS) was required. OmpA remained unfolded when bound to Skp and LPS in solution. From this complex, OmpA folded spontaneously into lipid bilayers as determined by electrophoretic mobility measurements, fluorescence spectroscopy, and circular dichroism spectroscopy. The folding of OmpA into lipid bilayers was inhibited when one of the periplasmic components, either Skp or LPS, was absent. Membrane insertion and folding of OmpA was most efficient at specific molar ratios of OmpA, Skp, and LPS. Unfolded OmpA in complex with Skp and LPS folded faster into phospholipid bilayers than urea-unfolded OmpA. Together, these results describe a first assisted folding pathway of an integral membrane protein on the example of OmpA.  相似文献   

5.
DNA microarrays revealed that expression of ycfR, which encodes a putative outer membrane protein, is significantly induced in Escherichia coli biofilms and is also induced by several stress conditions. We show that deletion of ycfR increased biofilm formation fivefold in the presence of glucose; the glucose effect was corroborated by showing binding of the cyclic AMP receptor protein to the ycfR promoter. It appears that YcfR is a multiple stress resistance protein, since deleting ycfR also rendered the cell more sensitive to acid, heat treatment, hydrogen peroxide, and cadmium. Increased biofilm formation through YcfR due to stress appears to be the result of decreasing indole synthesis, since a mutation in the tnaA gene encoding tryptophanase prevented enhanced biofilm formation upon stress and adding indole prevented enhanced biofilm formation upon stress. Deleting ycfR also affected outer membrane proteins and converted the cell from hydrophilic to hydrophobic, as well as increased cell aggregation fourfold. YcfR seems to be involved in the regulation of E. coli K-12 biofilm formation by decreasing cell aggregation and cell surface adhesion, by influencing the concentration of signal molecules, and by interfering with stress responses. Based on our findings, we propose that this locus be named bhsA, for influencing biofilm through hydrophobicity and stress response.  相似文献   

6.
A global search for extracytoplasmic folding catalysts in Escherichia coli was undertaken using different genetic systems that produce unstable or misfolded proteins in the periplasm. The extent of misfolding was monitored by the increased activity of the σE regulon that is specifically induced by misfolded proteins in the periplasm. Using multicopy libraries, we cloned two genes, surA and fkpA , that decreased the σE-dependent response constitutively induced by misfolded proteins. According to their sequences and their biochemical activities, SurA and FkpA belong to two different peptidyl prolyl isomerase (PPI) families. Interestingly, surA was also selected as a multicopy suppressor of a defined htrM ( rfaD ) null mutation. Such mutants produce a defective lipopolysaccharide that is unable to protect outer membrane proteins from degradation during folding. The SurA multicopy suppression effect in htrM ( rfaD ) mutant bacteria was directly associated with its ability to catalyse the folding of outer membrane proteins immediately after export. Finally, Tn 10 insertions were isolated, which led to an increased activity of the σE regulon. Such insertions were mapped to the dsb genes encoding catalysts of the protein disulphide isomerase (PDI) family, as well as to the surA , fkpA and ompH/skp genes. We propose that these three proteins (SurA, FkpA and OmpH/Skp) play an active role either as folding catalysts or as chaperones in extracytoplasmic compartments.  相似文献   

7.
Walton TA  Sousa MC 《Molecular cell》2004,15(3):367-374
The Seventeen Kilodalton Protein (Skp) is a trimeric periplasmic chaperone that assists outer membrane proteins in their folding and insertion into membranes. Here we report the crystal structure of Skp from E. coli. The structure of the Skp trimer resembles a jellyfish with alpha-helical tentacles protruding from a beta barrel body defining a central cavity. The architecture of Skp is unexpectedly similar to that of Prefoldin/GimC, a cytosolic chaperone present in eukaria and archea, that binds unfolded substrates in its central cavity. The ability of Skp to prevent the aggregation of model substrates in vitro is independent of ATP. Skp can interact directly with membrane lipids and lipopolysaccharide (LPS). These interactions are needed for efficient Skp-assisted folding of membrane proteins. We have identified a putative LPS binding site on the outer surface of Skp and propose a model for unfolded substrate binding.  相似文献   

8.
Expression of ykrL of Bacillus subtilis, encoding a close homologue of the Escherichia coli membrane protein quality control protease HtpX, was shown to be upregulated under membrane protein overproduction stress. Using DNA affinity chromatography, two proteins were found to bind to the promoter region of ykrL: Rok, known as a repressor of competence and genes for extracytoplasmic functions, and YkrK, a novel type of regulator encoded by the gene adjacent to ykrL but divergently transcribed. Electrophoretic mobility shift assays showed Rok and YkrK binding to the ykrL promoter region as well as YkrK binding to the ykrK promoter region. Comparative bioinformatic analysis of the ykrL promoter regions in related Bacillus species revealed a consensus motif, which was demonstrated to be the binding site of YkrK. Deletion of rok and ykrK in a PykrL-gfp reporter strain showed that both proteins are repressors of ykrL expression. In addition, conditions which activated PykrL (membrane protein overproduction, dissipation of the membrane potential, and salt and phenol stress) point to the involvement of YkrL in membrane protein quality control.  相似文献   

9.
10.
We constructed a novel system for periplasmic localization of target proteins, using yeast external invertase (INV) as anchor protein, in which the C- or N-terminal of the target protein was fused to the invertase and the fusion proteins expressed under the control of the constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (GAPDH). Unlike in conventional cell-surface display, the system enables the target fusion protein to localize in yeast periplasm in a free state. As a model, enhanced green fluorescence protein (EGFP) was localized in yeast periplasm using the new system. Yeast-periplasm localization of INV-EGFP and EGFP-INV fusion proteins was confirmed by fluorescence microscopy and immunoblotting: green fluorescence was observed at the cell outline and, in western blot analysis, most fusion proteins were detected in the cell-surface fraction, indicating that the fusion proteins had been transported to the cell-surface layer. In addition, in both C- and N-terminal fusion, invertase showed activity, indicating dimer formation. These results demonstrate that invertase is a useful anchor for localizing target protein in the yeast periplasm.  相似文献   

11.
Wu S  Ge X  Lv Z  Zhi Z  Chang Z  Zhao XS 《The Biochemical journal》2011,438(3):505-511
The OMPs (outer membrane proteins) of Gram-negative bacteria have to be translocated through the periplasmic space before reaching their final destination. The aqueous environment of the periplasmic space and high permeability of the outer membrane engender such a translocation process inevitably challenging. In Escherichia coli, although SurA, Skp and DegP have been identified to function in translocating OMPs across the periplasm, their precise roles and their relationship remain to be elucidated. In the present paper, by using fluorescence resonance energy transfer and single-molecule detection, we have studied the interaction between the OMP OmpC and these periplasmic quality control factors. The results of the present study reveal that the binding rate of OmpC to SurA or Skp is much faster than that to DegP, which may lead to sequential interaction between OMPs and different quality control factors. Such a kinetic partitioning mechanism for the chaperone-substrate interaction may be essential for the quality control of the biogenesis of OMPs.  相似文献   

12.
Skp of Escherichia coli (OmpH of Salmonella typhimurium) is a protein whose precise function has been obscured by its ubiquity in a wide range of subcellular fractions such as those containing DNA, ribosomes, and outer membranes. Combining in vitro and in vivo techniques we show that Skp is synthesized as a larger precursor that is processed upon translocation across the plasma membrane. Translocation is dependent on the H(+)-gradient, ATP, SecA, and SecY. Upon cellular subfractionation (avoiding non-specific electrostatic interactions) Skp partitions with beta-lactamase into the fraction of soluble, periplasmic proteins. In the context of the export factor properties of Skp previously demonstrated in vitro it is conceivable that this protein is involved in the later steps of protein translocation across the plasma membrane and/or sorting to the outer membrane.  相似文献   

13.
Cellular replicative senescence is a permanent growth arrest state that can be triggered by telomere shortening. The cyclin-dependent kinase (Cdk) inhibitor p21CIP1/WAF1 (p21), encoded by the CDKN1A gene, is a critical cell cycle regulator whose expression increases as cells approach senescence. Although the pathways responsible for its up-regulation are not well understood, compelling evidence indicates that the upstream triggering event is telomere dysfunction. Studies of replicative senescence have been complicated by the asynchrony of its onset, which is caused by the continuous and stochastic variability in individual cell lifespans. In fact, the actual entry into senescence has never been observed in a single unperturbed cell. We report here a new in vitro human model system that allows entry into senescence to be monitored in real-time in individual viable cells. We used homologous recombination to generate non-immortalized fibroblast cells with the enhanced yellow fluorescence protein (EYFP) gene knocked into one CDKN1A gene copy, allowing promoter activity to be visualized as fluorescence intensity. Gamma irradiation, DNA-damaging drugs, expression of p14ARF or oncogenic Ras, and replicative exhaustion all resulted in elevated EYFP expression, demonstrating its proper control by physiological signalling circuits. Analysis by time-lapse microscopy of cultures approaching replicative senescence revealed that p21 levels rise abruptly in individual aging cells and remain elevated for extended periods of time.  相似文献   

14.
We describe the identification of the Yersinia enterocolitica rpoE gene, which encodes the alternative sigma factor sigmaE, and the divergently transcribed nadB gene, as genes that are expressed during infection of mice. As in Escherichia coli, rpoE of Y. enterocolitica is essential for growth and its expression is autoregulated. Despite the similarities of the rpoE operons of Y. enterocolitica and E. coli, there are considerable differences in the response to extracytoplasmic stress. Unlike in E. coli, sigmaE of Y. enterocolitica is not induced by heat shock or ethanol. Overproduction of the outer membrane protein Ail does not lead to the induction of rpoE expression. However, rpoE expression is induced by osmotic stress.  相似文献   

15.
β-Barrel proteins, or outer membrane proteins (OMPs), perform many essential functions in Gram-negative bacteria, but questions remain about the mechanism by which they are assembled into the outer membrane (OM). In Escherichia coli, β-barrels are escorted across the periplasm by chaperones, most notably SurA and Skp. However, the contributions of these two chaperones to the assembly of the OM proteome remained unclear. We used differential proteomics to determine how the elimination of Skp and SurA affects the assembly of many OMPs. We have shown that removal of Skp has no impact on the levels of the 63 identified OM proteins. However, depletion of SurA in the skp strain has a marked impact on the OM proteome, diminishing the levels of almost all β-barrel proteins. Our results are consistent with a model in which SurA plays a primary chaperone role in E. coli. Furthermore, they suggest that while no OMPs prefer the Skp chaperone pathway in wild-type cells, most can use Skp efficiently when SurA is absent. Our data, which provide a unique glimpse into the protein content of the nonviable surA skp mutant, clarify the roles of the periplasmic chaperones in E. coli.  相似文献   

16.
Green fluorescent protein (GFP) and GFP-like proteins of different colors are important tools in cell biology. In many studies, the intracellular targeting of proteins has been determined by transiently expressing GFP fusion proteins and analyzing their intracellular localization by fluorescence microscopy. In most vectors, expression of GFP is driven by the enhancer/promoter cassette of the immediate early gene of human cytomegalovirus (hCMV). This cassette generates high levels of protein expression in most mammalian cell lines. Unfortunately, these nonphysiologically high protein levels have been repeatedly reported to artificially alter the intracellular targeting of proteins fused to GFP. To cope with this problem, we generated a multitude of attenuated GFP expression vectors by modifying the hCMV enhancer/promoter cassette. These modified vectors were transiently expressed, and the expression levels of enhanced green fluorescent protein (EGFP) alone and enhanced yellow fluorescent protein (EYFP) fused to another protein were determined by fluorescence microscopy and/or Western blotting. As shown in this study, we were able to (i) clearly reduce the expression of EGFP alone and (ii) reduce expression of an EYFP fusion protein down to the level of the endogenous protein, both in a graded manner.  相似文献   

17.
Adaptation to extracytoplasmic stress in Escherichia coli depends on the activation of sigmaE, normally sequestered by the membrane protein RseA. SigmaE is released in response to stress through the successive RseA cleavage by DegS and the RIP protease RseP. SigmaE and proteases that free it from RseA are essential. We isolated a multicopy suppressor that alleviated RseP and DegS requirement. The suppressor encodes a novel small RNA, RseX. Its activity required the RNA-binding protein Hfq. We used the property that small RNAs are often involved in RNA-RNA interactions to capture RseX putative partners; ompA and ompC mRNA, which encode two major outer membrane proteins, were identified. RseX activity was shown to confer an Hfq-dependent coordinate OmpA and OmpC down-regulation. Because RseP is shown to be no longer essential in a strain lacking OmpA and OmpC, we conclude that RseP, which is required for normal sigmaE activation, prevents toxicity due to the presence of two specific outer membrane proteins that are down-regulated by RseX.  相似文献   

18.
During the initial steps of biofilm formation, bacteria have to adapt to a major change in their environment. The adhesion-induced phenotypic changes in a type 1 fimbriated Escherichia coli strain included reductions in the levels of several outer membrane proteins, one of which was identified as OmpX. Here, the phenotypes of mutant strains that differ at the ompX locus were studied with regard to adhesion, cell surface properties, and resistance to stress and antimicrobial compounds. The kinetics of adhesion were measured online by an extended quartz crystal microbalance technique for wild-type and mutant strains with a fimbriated or nonfimbriated background. Deletion of ompX led to significantly increased cell-surface contact in fimbriated strains but to decreased cell-surface contact in a nonfimbriated strain. Phenotypic characterization of the ompX mutant demonstrated that ompX interferes with proper regulation of cell surface structures that play a key role in mediating firm contact of the cell with a surface (i.e., type 1 fimbriae, flagellae, and exopolysaccharides). These phenotypic changes were accompanied by increased tolerance to several antibiotic compounds and sodium dodecyl sulfate. Based on these results, we propose that changes in the composition of outer membrane proteins during fimbria-mediated adhesion may be part of a coordinated adaptive response to the attached mode of growth.  相似文献   

19.
To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis.  相似文献   

20.
Expression of single-chain antibody fragments (scAb)in the periplasm ofEscherichia colioften results in low soluble product yield and cell lysis. We have increased scAb solubility and prevented cell culture lysis by coexpressing theE. coliSkp chaperone gene. A mutant Skp cistron was linked to a bacteriophage T7 gene 10 translational initiation region and placed either downstream of a scAb gene within an isopropyl β- -thiogalactopyranoside-inducible expression cassette or on a separate colE1-compatible arabinose-inducible vector. Increases in scAb solubility reflected the amount of coexpressed Skp. A bacteriophage display vector that was also engineered to coexpress Skp permitted display of a virtually undisplayable scAb and should prove useful in expanding library sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号