首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphioxus and vertebrates are the only deuterostomes to exhibit unequivocal somitic segmentation. The relative simplicity of the amphioxus genome makes it a favorable organism for elucidating the basic genetic network required for chordate somite development. Here we describe the developmental expression of the somite marker, AmphiTbx15/18/22, which is first expressed at the mid-gastrula stage in dorsolateral mesendoderm. At the early neurula stage, expression is detected in the first three pairs of developing somites. By the mid-neurula stage, expression is downregulated in anterior somites, and only detected in the penultimate somite primordia. In early larvae, the gene is expressed in nascent somites before they pinch off from the posterior archenteron (tail bud). Integrating functional, phylogenetic and expression data from a variety of triploblast organisms, we have reconstructed the evolutionary history of the Tbx15/18/22 subfamily. This analysis suggests that the Tbx15/18/22 gene may have played a role in patterning somites in the last common ancestor of all chordates, a role that was later conserved by its descendents following gene duplications within the vertebrate lineage. Furthermore, the comparison of expression domains within this gene subfamily reveals similarities in the genetic bases of trunk and cranial mesoderm segmentation. This lends support to the hypothesis that the vertebrate head evolved from an ancestor possessing segmented cranial mesoderm.  相似文献   

2.
3.
We present some theoretical considerations about the initial process of pre-patterning during embryonic segmentation, with particular reference to somite formation. We first suggest that the pre-pattern is a stable spatial sinusoidal (or, at least, periodic) wave. The periodic wave originates from an oscillator ("clock") in the proliferative region that gives rise to the cells. At the moment the cells leave the proliferative or "progress" zone, or somewhat later, a permanent record is made of the current state of the oscillation, which cells then keep during their pre-somitic phase, before explicit somite and somite boundary formation. Thus, a trail is left behind the progress zone in the form of a spatial sine wave. Second, we also observe that the factors involved in the progress-zone clock and its wave-like trail may form multimers, which will oscillate with higher space-time frequency and thus shorter wavelengths than the monomers. Whether or not our first suggestion is correct, this phenomenon may account for multiple wavelengths in somitogenesis, and may thus encompass somite formation, but also somite polarization (half-wavelength) into anterior and posterior halves, as well as the puzzling observation that expression of her1 in zebrafish is in primordia of alternating somites, i.e. it exhibits a 2-somite wavelength.  相似文献   

4.
E J Sanders  E Cheung 《Teratology》1990,41(3):289-297
A repeatable somite anomaly is described that results from the incubation of cultured chick embryos in the presence of ethanol. The anomaly comprises a misalignment of approximately five consecutive pairs of somites such that one of each pair is displaced cranially by up to one-half a somite length. The appearance of the malformation is delayed by approximately six somite pairs after the beginning of treatment. These characteristics were shared by embryos treated at the stage of gastrulation (no somites yet present) up to embryos possessing ten pairs of somites at treatment time. The deleterious effect did not appear to result from a disruption in the mechanics of the segmentation process itself, since isolated segmental plates were able to form normal intersomitic clefts in the presence of ethanol. Similarly, there were apparently no alterations in the compaction process that occurs at the cranial end of the segmental plate, since both the contractile and adhesive components were unaffected, as judged by the distributions of actin and fibronectin. The potential mechanisms of the anomaly are discussed with reference to similar segmental defects produced by heat shock. In view of earlier results indicating that cells in the primitive streak at gastrulation are sensitive to the presence of ethanol, it is proposed that this somite anomaly is due to a disruption in the contribution of these mesoderm cells to the segmental plate.  相似文献   

5.
6.
Pourquié O 《Cell》2011,145(5):650-663
One of the most striking features of the human vertebral column is its periodic organization along the anterior-posterior axis. This pattern is established when segments of vertebrates, called somites, bud off at a defined pace from the anterior tip of the embryo's presomitic mesoderm (PSM). To trigger this rhythmic production of somites, three major signaling pathways--Notch, Wnt/β-catenin, and fibroblast growth factor (FGF)--integrate into a molecular network that generates a traveling wave of gene expression along the embryonic axis, called the "segmentation clock." Recent systems approaches have begun identifying specific signaling circuits within the network that set the pace of the oscillations, synchronize gene expression cycles in neighboring cells, and contribute to the robustness and bilateral symmetry of somite formation. These findings establish a new model for vertebrate segmentation and provide a conceptual framework to explain human diseases of the spine, such as congenital scoliosis.  相似文献   

7.
After many years of research, the mechanisms that generate a periodic pattern of repeated elements (somites) along the length of the embryonic body axis is still one of the major unresolved problems in developmental biology. Here we present a mathematical formulation of the cell cycle model for somitogenesis proposed in Development105 (1989), 119-130. Somite precursor cells in the node are asynchronous, and therefore, as a population, generate continuously pre-somite cells which enter the segmental plate. The model makes the hypothesis that there exists a time window within the cell cycle, making up one-seventh of the cycle, which gates the pre-somite cells so that they make somites discretely, seven per cycle. We show that the model can indeed account for the spatiotemporal patterning of somite formation during normal development as well as the periodic abnormalities produced by heat shock treatment. We also relate the model to recent molecular data on the process of somite formation.  相似文献   

8.
Somites represent the first visual evidence of segmentation in the developing vertebrate embryo and it is becoming clear that this segmental pattern of the somites is used in the initial stages of development of other segmented systems such as the peripheral nervous system. However, it is not known whether the somites continue to contribute to the maintenance of the segmental pattern after the dispersal of the somitic cells. In particular, the extent to which cells from a single somite contribute to all of the tissues of a single body segment and the extent to which they mix with cells from adjacent segments during their migration is not known. In this study, we have replaced single somites in the future cervical region of 2-day-old chick embryos with equivalent, similarly staged quail somites. The chimerae were then allowed to develop for a further 6 days when they were killed. The cervical region was dissected and serially sectioned. The sections were stained with the Feulgen reaction for DNA to differentiate between the chick and quail cells. The results showed that the cells from a single somite remained as a clearly delimited group throughout their migration. Furthermore, the sclerotome, dermatome and myotome portions from the single somites could always be recognised as being separate from similar cells from other somites. The somitic cells formed all of the tissues within a body segment excluding the epidermis, notochord and neural tissue. There was very little mixing of the somitic cells between adjacent segments. The segmental pattern of the somites is therefore maintained during the migration of the somitic cells and this might be fundamental to a mechanism whereby the segmentation of structures, such as the peripheral nervous system, is also maintained during development.  相似文献   

9.
A disordered somite pattern could be produced artificially when the segmental lateral plate of chickembryo was replaced by dissociated cells of quail segmental pate.The artificially disordered somitepattern formed at either place was used in our work as a model to analyze the mechanism of thedevelopment and differentiation of somite on chick embryo.Our conclusions include the following:1.Although the formation of somites from the dissociated segmental plate cells does not requirespecial environment,the development and differentiation of the somltes require a special environmentwhich is related to the neural tube and notochord.The effect of this special environmental factor maydecrease gradually with the increase of the distance from neural tube to lateral plate.2.The somites located on paraxial area at different distances to the axis have different fates indevelopment.3.The formation of epithelial vesicles is the property of somite cells and the epithelial vesicle is thestructural basis of somite differentiation.If and factor interferes with the differentiation of thesomite,the epithelial vesicle of the somite will be degenerated within certain period of time.4.During resegmentation of the somite,the number,size and arrangement of sclerotome in situ donot depend on the somite from which they are derived.5.Somite cells do not transdifferentiate into kidney tubule directly from their original epithelialvesicles,but are reorganized from the free cells dispersed from the disrupted somites.6.The establishment of cell commitment may involve several steps.Before commitment isestablished the of cell commitment is labile.7.The differentiation of sclerotome starts with the rupture of epithelial wall of somites and thedirection of its movement depends not only on the notochord but also on their position with respectto the neural tube and notochord.8.The disordered somite pattern doesn't influence the segmentation of dorsal root ganglia in situ,but causes the formation of the ectopic dorsal root ganglia.Key Words:Somite differentiation;Artificial disordered somite pattern;Chimeral somite;Resegmentation of sclerotome;Distribution of dorsal root ganglia  相似文献   

10.
The number of vertebrae is defined strictly for a given species and depends on the number of somites, which are the earliest metameric structures that form in development. Somites are formed by sequential segmentation. The periodicity of somite segmentation is orchestrated by the synchronous oscillation of gene expression in the presomitic mesoderm (PSM), termed the "somite segmentation clock," in which Notch signaling plays a crucial role. Here we show that the clock period is sensitive to Notch activity, which is fine-tuned by its feedback regulator, Notch-regulated ankyrin repeat protein (Nrarp), and that Nrarp is essential for forming the proper number and morphology of axial skeleton components. Null-mutant mice for Nrarp have fewer vertebrae and have defective morphologies. Notch activity is enhanced in the PSM of the Nrarp(-/-) embryo, where the ~2-h segmentation period is extended by 5 min, thereby forming fewer somites and their resultant vertebrae. Reduced Notch activity partially rescues the Nrarp(-/-) phenotype in the number of somites, but not in morphology. Therefore we propose that the period of the somite segmentation clock is sensitive to Notch activity and that Nrarp plays essential roles in the morphology of vertebrae and ribs.  相似文献   

11.
12.
The metameric organization of the vertebrate trunk is a characteristic feature of all members of this phylum. The origin of this metamerism can be traced to the division of paraxial mesoderm into individual units, termed somites, during embryonic development. Despite the identification of somites as the first overt sign of segmentation in vertebrates well over 100 years ago, the mechanism(s) underlying somite formation remain poorly understood. Recently, however, several genes have been identified which play prominent roles in orchestrating segmentation, including the novel secreted factor lunatic fringe. To gain further insight into the mechanism by which lunatic fringe controls somite development, we have conducted a thorough analysis of lunatic fringe expression in the unsegmented paraxial mesoderm of chick embryos. Here we report that lunatic fringe is expressed predominantly in somite -II, where somite I corresponds to the most recently formed somite and somite -I corresponds to the group of cells which will form the next somite. In addition, we show that lunatic fringe is expressed in a highly dynamic manner in the chick segmental plate prior to somite formation and that lunatic fringe expression cycles autonomously with a periodicity of somite formation. Moreover, the murine ortholog of lunatic fringe undergoes a similar cycling expression pattern in the presomitic mesoderm of somite stage mouse embryos. The demonstration of a dynamic periodic expression pattern suggests that lunatic fringe may function to integrate notch signaling to a cellular oscillator controlling somite segmentation.  相似文献   

13.
In this study, we have employed whole-mount, in situ hybridization to study the spatial pattern of hsc70 and hsp70 mRNA accumulation in normal and heat shocked embryos during Xenopus laevis development. Our findings revealed that hsc70 mRNA was constitutively present in a global fashion throughout the embryo and was not heat inducible. Accumulation of hsp70 mRNA, however, was detected only in heat shocked embryos. Furthermore, hsp70 mRNA accumulation was enriched in a tissue-specific manner in X. laevis tailbud embryos within 15 minutes of a 33 degrees C heat shock. Abundant levels of heat shock-induced hsp70 mRNA were detected in the head region, including the lens placode, the cement gland, and in the somitic region and proctodeum. Preferential heat-induced accumulation of hsp70 mRNA was first detected at a heat shock temperature of 30 degrees C. Placement of embryos at 22 degrees C after a 1-hour, 33 degrees C heat shock resulted in decreased hsp70 mRNA with time, but the message persisted in selected tissues, including the lens placode and somites. Treatment of tailbud embryos with either sodium arsenite or zinc chloride induced a tissue-specific enrichment of hsp70 mRNA in the lens placode and somitic region. These studies reveal the complex nature of the heat shock response in different embryonic tissues and suggest the presence of regulatory mechanisms that lead to a stressor-induced, tissue-specific enrichment of hsp70 mRNA.  相似文献   

14.
Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, chelicerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the appendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further modified within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may also show reduced somite counts, but reconstructing segmentation in these animals remains challenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa. We also present our observations within the concept of pseudotagma, whereby the true tagmata – the prosoma and opisthosoma – can be defined on a fundamental change in the limb series while pseudotagmata, such as the cephalosoma/proterosoma, are expressed as divisions in sclerites covering the body without an accompanying change in the appendages.  相似文献   

15.
Postimplantation stage rat embryos (6-10 somites) undergo abnormal development after exposure to a temperature of 43 degrees C for 30 min. A heat shock of 43 degrees C for 30 min also induces the synthesis of a set of eight heat shock proteins (hsps) with molecular masses ranging from 28,000 to 82,000 Da. The synthesis of these hsps is rapidly induced after the heat shock is applied and rapidly decays after embryos are returned to 37 degrees C. A heat shock of 42 degrees C for 30 min has no effect on rat embryo growth and development, but does induce the synthesis of three hsps. The most prominent of these three is believed to be the typical mammalian 70 kDa hsp. Furthermore, a 42 degrees C, 30-min heat shock followed by a 43 degrees C 30-min heat shock leads to partial protection from the embryotoxic effects of a single exposure at 43 degrees C, i.e., thermotolerance.  相似文献   

16.
In the vertebrate embryo, somites constitute the basis of the segmental body pattern. They give rise to the axial skeleton, the dermis of the back and all striated muscles of the body. In the chick embryo, a pair of somites buds off, in a highly coordinated fashion, every 90 minutes, from the cranial end of the presomitic mesoderm (PSM) while new mesenchymal cells enter the paraxial mesoderm as a consequence of gastrulation. The processes leading to the segmentation of the somite are not yet understood. We have identified and characterised c-hairy1, an avian homologue of the Drosophila segmentation gene, hairy. c-hairy1 is strongly expressed in the presomitic mesoderm where its mRNA exhibits a cyclic posterior-to-anterior wave of expression whose periodicity corresponds to the formation time of one somite (90 min). Fate mapping of the rostral half of the PSM using the quail-chick chimera technique supports a model of cryptic segmentation within the presomitic mesoderm, and indicates that c-hairy1 expression dynamics are not due to massive cell displacement. Analysis of in vitro cultures of isolated presomitic mesoderm demonstrates that rhythmic c-hairy1 mRNA production and degradation is an autonomous property of the paraxial mesoderm. Rather than resulting from the caudal-to-rostral propagation of an activating signal, it arises from pulses of c-hairy1 expression that are coordinated in time and space. Blocking protein synthesis does not alter the propagation of c-hairy1 expression, indicating that negative autoregulation of c-hairy1 expression is unlikely to control its periodic expression. Most of the segmentation models proposed for somite formation rely on the existence of an internal clock coordinating the cells to segment together to form a somite. These results provide the first molecular evidence of a developmental clock linked to segmentation and somitogenesis of the paraxial mesoderm, and support the possibility that segmentation mechanisms used by invertebrates and vertebrates have been conserved.  相似文献   

17.
The Notch-regulated ankyrin repeat protein (Nrarp) is a component of a negative feedback system that attenuates Notch pathway-mediated signaling. In vertebrates, the timing and spacing of formation of the mesodermal somites are controlled by a molecular oscillator termed the segmentation clock. Somites are also patterned along the rostral-caudal axis of the embryo. Here, we demonstrate that Nrarp-deficient embryos and mice exhibit genetic background-dependent defects of the axial skeleton. While progression of the segmentation clock occurred in Nrarp-deficient embryos, they exhibited altered rostrocaudal patterning of the somites. In Nrarp mutant embryos, the posterior somite compartment was expanded. These studies confirm an anticipated, but previously undocumented role for the Nrarp gene in vertebrate somite patterning and provide an example of the strong influence that genetic background plays on the phenotypes exhibited by mutant mice.  相似文献   

18.
The head-trunk interface lies at the occipito-cervical boundary, which corresponds to the somite 5/6 level. Previous studies have demonstrated that neural crest cells also behave differently either side of this boundary and that this may be due to intrinsic differences between cranial and trunk crest. However, it is also possible that some of the observed differences between cranial and trunk crest are assigned by environmental cues. We have therefore scrutinised the behaviour of the neural crest cells generated either side of the occipito-cervical boundary in chick and, interestingly, find that both behave in a truncal fashion by traversing the anterior half of their adjacent somites. Furthermore, although not previously described, we find that transient DRGs form opposite somites 4 and 5. Crest cells produced anterior of the somite 3/4 boundary avoid the somites and behave in a non-truncal fashion; these cells populate the pharyngeal arches, and thus contribute to the developing head. We have further shown, via somite transplantations, that differential behaviour of the posterior versus anterior occipital crest is assigned by the somites. If somites 1 to 3 are replaced by trunk somites, then the anterior occipital crest will behave in a truncal fashion by invading the somites. Correspondingly, if these anterior occipital somites are transplanted in place of trunk somites, they perturb the migration of trunk crest. Thus, for the neural crest, the head-trunk interface does not lie at the occipito-cervical boundary, but rather lies at the somite 3/4 level and is defined by the somites. The fact that this boundary lies at the somite 3/4 level in chick is significant as it reflects the more ancient posterior occipital boundary; in fish, only the first three somites contribute to the occipital bone.  相似文献   

19.
The metameric structure of the vertebrate trunk is generated by repeated formation of somites from the unsegmented presomitic mesoderm (PSM). We report the initial characterization of nine different mutants affecting segmentation that were isolated in a large-scale mutagenesis screen in Medaka (Oryzias latipes). Four mutants were identified that show a complete or partial absence of somites or somite boundaries. In addition, five mutations were found that cause fused somites or somites with irregular sizes and shapes. In situ hybridization analysis using specific markers involved in the segmentation clock and antero-posterior (A-P) polarity of somites revealed that the nine mutants can be compiled into two groups. In group 1, mutants exhibit defects in tailbud formation and PSM prepatterning, whereas A-P identity in the somites is defective in group 2 mutants. Three mutants (planlos, pll; schnelles ende, sne; samidare, sam) have characteristic phenotypes that are similar to those in zebrafish mutants affected in the Delta/Notch signaling pathway. The majority of mutants, however, exhibit somitic phenotypes distinct from those found in zebrafish, such as individually fused somites and irregular somite sizes. Thus, these Medaka mutants can be expected to provide clues to uncovering novel components essential for somitogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号