首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
An invertase from the thermophilic fungus, Thermomyces lanuginosus was immobilized on phenyl-Sepharose and its properties were studied. Between the soluble and immobilized forms of the invertase, there were not much difference in their optimum pH, K M and V max for sucrose. In contrast, the K M and V max for raffinose changed significantly. The optimum temperature for the immobilized invertase was lower by 10 C. The immobilized invertase showed remarkable stability at 50 C and was less sensitive to inhibition by metal ions. There was no leaching of the enzyme for at least a month when stored in the refrigerator. The method is novel and specific for the thermophilic invertase as a mesophilic invertase (from yeast) did not bind to phenyl-Sepharose.  相似文献   

2.
Investigations of invertase (EC 3.2.1.26) immobilized inside modified nylon tubes showed that between 4% and 20% (w/w) of the protein exposed to binding sites on the tube was immobilized. An enhanced activity consistent with enzyme purification during immobilization was also evident, suggesting that, in scaled-up commercial applications, nylon tube invertase would be a more economical converter of sucrose than the free enzyme. The quantity and specific activity of the immobilized protein were not stochiometrical with the amount used in the coupling solution and, in the system studied, a concentration of 2 mg ml?1 was optimal. Km and Vmax values confirmed higher rates of immobilized invertase catalysis when the rates of substrate flow through the reactor were higher. Higher rates of substrate flow imply a shortened residence time in the reactor and would lower the fractional conversion per pass of the substrate, reducing the efficiency of the reactor in flow-through situations. Thus, these higher catalysis rates, attributable at the higher flow rates to a reduction of the diffusion barrier between enzyme and substrate, would not translate into improved economy in the commercial flow-through processes at which the reactor is aimed.  相似文献   

3.
Subtilisin BPN′ was immobilized to porous glass via isothiocyanate coupling. The pH optimum of the enzyme was shifted to the alkaline side on binding. This effect was more pronounced with ethyl lactate than with N-tosyl arginine methyl ester (TAME). Presumably, the shift is a reflection of the negative charge on the surface of the glass. The Michaelis constant and Vmax of soluble subtilisin BPN′ with TAME were two and one orders of magnitude, respectively, lower than with ethyl lactate. Vmax, calculated per g of active enzyme, with TAME as the substrate was not affected by immobilization, while Vmax with ethyl lactate decreased greater than tenfold. The apparent KM decreased on immobilization with ethyl lactate as substrate and increased with TAME. Results are explained in terms of diffusional resistance and a possible attraction of ethyl lactate to the glass surface. Active site titration indicated that about 25%, of the immobilized enzyme was active.  相似文献   

4.
The recombinant invertase INVB (re-INVB) from Zymomonas mobilis was immobilized on microbeads of Nylon-6, by means of covalent bonding. The enzyme was strongly and successfully bound to the support. The activity of the free and immobilized enzyme was determined, using 10% (w/v) sucrose, at a temperature ranging between 15 and 60 °C and a pH ranging between 3.5 and 7. The optimal pH and temperature for the immobilized enzyme were 5.5 and 25 °C, respectively. Immobilization of re-INVB on Nylon-6 showed no significant change in the optimal pH, but a difference in the optimal temperature was evident, as that for the free enzyme was shown to be 40 °C. The values for kinetic parameters were determined as: 984 and 98 mM for of immobilized and free re-INVB, respectively. values for immobilized and free enzymes were 6.1 × 102 and 1.2 × 104 s−1, respectively, and immobilized re-INVB showed of 158.73 μmol h min−1 mg−1. Immobilization of re-INVB on Nylon-6 enhanced the thermostability of the enzyme by 50% at 30 °C and 70% at 40 °C, when compared to the free enzyme. The immobilization system reported here may have future biotechnological applications, owing to the simplicity of the immobilization technique, the strong binding of re-INVB to the support and the effective thermostability of the enzyme.  相似文献   

5.
Mucor miehei lipase was immobilized on magnetic polysiloxane-polyvinyl alcohol particles by covalent binding. The resulting immobilized biocatalyst was recycled by seven assays, with a retained activity around 10% of its initial activity. Km and Vmax were respectively 228.3 M and 36.1 U mg of protein–1 for immobilized enzyme. Whereas the optimum temperature remained the same for both soluble and immobilized lipase (45 °C), there was a shift in pH profiles after immobilization. Optimum pH for the immobilized lipase was 8.0. Immobilized enzyme showed to be more resistant than soluble lipase when assays were performed out of the optimum temperature or pH.  相似文献   

6.
This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40°C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The Km values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower Vmax as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.  相似文献   

7.
The α-amylase of Bacillus amyloliquifaciens TSWK1-1 (GenBank Number, GQ121033) was immobilized by various methods, including ionic binding with DEAE cellulose, covalent coupling with gelatin and entrapment in polyacrylamide and agar. The immobilization of the purified enzyme was most effective with the DEAE cellulose followed by gelatin, agar and polyacrylamide. The K m increased, while V max decreased upon immobilization on various supports. The temperature and pH profiles broadened, while thermostability and pH stability enhanced after immobilization. The immobilized enzyme exhibited greater activity in various non-ionic surfactants, such as Tween-20, Tween-80 and Triton X-100 and ionic surfactant, SDS. Similarly, the enhanced stability of the immobilized α-amylase in various organic solvents was among the attractive features of the study. The reusability of the immobilized enzyme in terms of operational stability was assessed. The DEAE cellulose immobilized α-amylase retained its initial activity even after 20 consequent cycles. The DEAE cellulose immobilized enzyme hydrolyzed starch with 27 % of efficiency. In summary, the immobilization of B. amyloliquifaciens TSWK1-1 α-amylase with DEAE cellulose appeared most suitable for the improved biocatalytic properties and stability.  相似文献   

8.
Polyvinylimidazole (PVI)-grafted iron oxide nanoparticles (PVIgMNP) were prepared by grafting of telomere of PVI on the iron oxide nanoparticles. Different metal ions (Cu2+, Zn2+, Cr2+, Ni2+) ions were chelated on polyvinylimidazole-grafted iron oxide nanoparticles, and then the metal-chelated magnetic particles were used in the adsorption of invertase. The maximum invertase immobilization capacity of the PVIgMNP–Cu2+ beads was observed to be 142.856 mg/g (invertase/PVIgMNP) at pH 5.0. The values of the maximum reaction rate (V max) and Michaelis–Menten constant (Km) were determined for the free and immobilized enzymes. The enzyme adsorption–desorption studies, pH effect on the adsorption efficiency, affinity of different metal ions, the kinetic parameters and storage stability of free and immobilized enzymes were evaluated.  相似文献   

9.
Abstract

Purified Acetobacter tropicalis dextransucrase was immobilized in different matrices viz. calcium-alginate, κ-carrageenan, agar, agarose and polyacrylamide. Calcium-alginate was proved to be superior to the other matrices for immobilization of dextransucrase enzyme. Standardization of immobilization conditions in calcium-alginate resulted in 99.5% relative activity of dextransucrase. This is the first report with such a large amount of relative activity as compared to the previous reports. The immobilized enzyme retained activity for 11 batch reactions without a decrease in activity which suggested that enzyme can be used repetitively for 11 cycles. The dextransucrase was also characterized, which revealed that enzyme worked best at pH 5.5 and 37?°C for 30?min in both the free as well as immobilized state. Calcium-alginate immobilized dextransucrase of A. tropicalis showed the Km and Vmax values of 29?mM and 5000?U/mg, respectively. Free and immobilized enzyme produced 5.7?mg/mL and 2.6?mg/mL of dextran in 2?L bench scale fermenter under optimum reaction conditions. This immobilization method is very unconventional for purified large molecular weight dextran-free dextransucrase of A. tropicalis as this method is used usually for cells. Such reports on entrapment of purified enzyme are rarely documented.  相似文献   

10.
Soybean seed coat peroxidase (SBP) was immobilized on various polyaniline-based polymers (PANI), activated with glutaraldehyde. The most reduced polymer (PANIG2) showed the highest immobilization capacity (8.2 mg SBP?g?1 PANIG2). The optimum pH for immobilization was 6.0 and the maximum retention was achieved after a 6-h reaction period. The efficiency of enzyme activity retention was 82%. When stored at 4°C, the immobilized enzyme retained 80% of its activity for 15 weeks as evidenced by tests performed at 2-week intervals. The immobilized SBP showed the same pH-activity profile as that of the free SBP for pyrogallol oxidation but the optimum temperature (55°C) was 10°C below that of the free enzyme. Kinetic analysis show that the Km was conserved while the specific Vmax dropped from 14.6 to 11.4 µmol min?1 µg?1, in agreement with the immobilization efficiency. Substrate specificity was practically the same for both enzymes. Immobilized SBP showed a greatly improved tolerance to different organic solvents; while free SBP lost around 90% of its activity at a 50% organic solvent concentration, immobilized SBP underwent only 30% inactivation at a concentration of 70% acetonitrile. Taking into account that immobilized HRP loses more than 40% of its activity at a 20% organic solvent concentration, immobilized SBP performed much better than its widely used counterpart HRP.  相似文献   

11.
Three different isoforms of invertases have been detected in the developing internodes of barley (Hordeum vulgare). Based on substrate specificities, the isoforms have been identified to be invertases (β-fructosidases EC 3.2.1.26). The soluble (cytosolic) invertase isoform can be purified to apparent homogeneity by diethylaminoethyl cellulose, Concanavalin-A Sepharose, organomercurial Sepharose, and Sephacryl S-300 chromatography. A bound (cell wall) invertase isoform can be released by 1 molar salt and purified further by the same procedures as above except omitting the organo-mercurial Sepharose affinity chromatography step. A third isoform of invertase, which is apparently tightly associated with the cell wall, cannot be isolated yet. The soluble and bound invertase isoforms were purified by factors of 60- and 7-fold, respectively. The native enzymes have an apparent molecular weight of 120 kilodaltons as estimated by gel filtration. They have been identified to be dimers under denaturing and nondenaturing conditions. The soluble enzyme has a pH optimum of 5.5, Km of 12 millimolar, and a Vmax of 80 micromole per minute per milligram of protein compared with cell wall isozyme which has a pH optimum of 4.5, Km of millimolar, and a Vmax of 9 micromole per minute per milligram of protein.  相似文献   

12.
The extracellular cellulase enzyme system of Clostridium A11 was fractionated by affinity chromatography on Avicel: 80% of the initial carboxymethylcellulase (CMCase) activity was adhered. This cellulase system was a multicomponent aggregate. Several CMCase activities were detected, but the major protein P1 had no detectable activity. Adhered and unadhered cellulases showed CMCase activity with the highest specific activity in Avicel-adhered fraction. However, only afhered fractions could degrade Avicel. Thus, efficiency of the enzymatic hydrolysis of Avicel was related to the cellulase-adhesion capacity. Carboxymethylcellulase and Avicelase activities were studied with the extracellular enzyme system and cloned cellulases. Genomic libraries from Clostridium A11 were constructed with DNA from this Clostridium, and a new gene cel1 was isolated. The gene(s) product(s) from cel1 exhibited CMCase and p-nitrophenylcellobiosidase (pNPCbase) activities. This cloned cellulase adhered to cellulose. Synergism between adhered enzyme system and cloned endoglucanases was observed on Avicel degradation. Conversely, no synergism was observed on CMC hydrolysis. Addition of cloned endoglucanase to cellulase complex led to increase of the Vmax without significant K m variation. Cloned endoglucanases can be added to cellulase complexes to efficiently hydrolyze cellulose.  相似文献   

13.
Purified α-amylase from a soil bacterium Bacillus sp. SKB4 was immobilized on coconut coir, an inexpensive cellulosic fiber, with the cross-linking agent glutaraldehyde. The catalytic properties and stability of the immobilized enzyme were compared with those of its soluble form. The enzyme retained 97.2% of its activity and its catalytic properties were not drastically altered after immobilization. The pH optimum and stability of the immobilized enzyme were shifted towards the alkaline range compared to the free enzyme. The optimum temperature for enzymatic activity was 90°C in both forms of the enzyme. The soluble and immobilized enzyme retained 19% and 70% of original activity, respectively, after pre-incubation for 1 h at 90°C. Immobilized amylase was less susceptible to attack by heavy metal ions and showed higher Km and Vmax values than its free form. The bound enzyme showed significant activity and stability after 6 months of storage at 4°C. All of these characteristics make the new carrier system suitable for use in the bioprocess and food industries.  相似文献   

14.
High activity alkaline protease was obtained when the enzyme was immobilized on Dowex MWA-1 (mesh 20–50) with 10% glutaraldehyde in chilled phosphate buffer (M/15, pH 6.5). Activity yields of the protease and rennet were 27 and 29, respectively. The highest activities appeared at 60°C, pH 10 for alkaline protease and 50°C, pH 4.0 for rennet. The properties of both proteases were not essentially changed by the immobilization except that the Km values of both enzymes were increased about tenfold as a result of immobilization. Both proteases in the immobilized state were more stable than those in the free state at 60°C. Other peptide hydrolases, β-galactosidase, invertase, and glucoamylase, were successfully immobilized with high activities, but lipase, hexokinase, glucose-6-phosphate dehydrogenase, and xanthine oxidase became inactive.  相似文献   

15.
The dynamics of β-xylosidase biosynthesis from Aspergillus niger B 03 was investigated in laboratory bioreactor. Maximum xylosidase activity 5.5 U/ml was achieved after 80 h fermentation at medium pH 4.0. The isolated β-xylosidase was immobilized on polyamide membrane support and the basic characteristics of the immobilized enzyme were determined. Maximum immobilization and activity yield obtained was 30.0 and 6.8%, respectively. A shift in temperature optimum and pH optimum was observed for immobilized β-xylosidase compared to the free enzyme. Immobilized enzyme exhibited maximum activity at 45 °C and pH 4.5 while its free counterpart at 70 °C and pH 3.5, respectively. Thermal stability at 40 and 50 °C and storage stability of immobilized β-xylosidase were investigated at pH 5.0. Kinetic parameters Km, Vmax and Ki were determined for both enzyme forms. Free and immobilized β-xylosidase were tested for xylose production from birchwood xylan. The substrate was preliminarily depolymerized with xylanase to xylooligosaccharides and the amount of xylose obtained after their hydrolysis with free and immobilized β-xylosidase was determined by HPLC analysis. Continuous enzyme hydrolysis of birchwood xylan was performed with xylanase and free or immobilized β-xylosidase. The maximum extent of hydrolysis was 25 and 30% with free and immobilized enzyme, respectively. Immobilized preparation was also examined for reusability in 20 consecutive cycles at 40 °C.  相似文献   

16.
Pectinesterase isolated from Malatya apricot pulp was covalently immobilized onto glutaraldehyde-containing amino group functionalized porous glass beads surface by chemical immobilization at pH 8.0. The amount of covalently bound apricot PE was found 1.721 mg/g glass support. The properties of immobilized enzyme were investigated and compared to those of free enzyme. The effect of various parameters such as pH, temperature, activation energy, heat and storage stability on immobilized enzyme were investigated. Optimum pH and temperature were determined to be 8.0 and 50 °C, respectively. The immobilized PE exhibited better thermostability than the free one. Kinetic parameters of the immobilized enzyme (Km and Vmax values) were also evaluated. The Km was 0.71 mM and the Vmax was 0.64 μmol min?1 mg?1. No drastic change was observed in the Km and Vmax values. The patterns of heat stability indicated that the immobilization process tends to stabilize the enzyme. Thermal and storage stability experiments were also carried out. It was observed that the immobilized enzyme had longer storage stability and retained 50% of its initial activity during 30 days.  相似文献   

17.
Nanogels are promising materials as supports for enzyme immobilization. A new hydrogel comprising of methacrylic acid (MAAc) and N-vinyl pyrrolidone (N-VP) and ethyleneglycol dimethacrylate (EGDMA) was synthesized and converted to nanogel by an emulsification method. Nanogel was further functionalized by Curtius azide reaction for use as support for the covalent immobilization of invertase (Saccharomyces cerevisiae). As-prepared or invertase-immobilized nanogel was characterized by FTIR, XRD, TEM and nitrogen analysis. The characterization of both free and the immobilized-invertase were performed using a spectrophotometric method at 540 nm. The values of Vmax, maximum reaction rate, (0.123 unit/mg), km, Michaelis constant (7.429 mol/L) and Ea, energy of activation (3.511 kj/mol) for the immobilized-invertase are comparable with those of the free invertase at optimum conditions (time 70 min, pH 6.0 and temperature 45 °C). The covalent immobilization enhanced the pH and thermal stability of invertase. The immobilized biocatalyst was efficiently reused up to eight cycles.  相似文献   

18.
Sporopollenin is a natural polymer obtained from Lycopodium clavatum, which is highly stable with constant chemical structure and has high resistant capacity to chemical attack. In this study, immobilization of lipase from Candida rugosa (CRL) on sporopollenin by adsorption method is reported for the first time. Besides this, the enzyme adsorption capacity, activity and thermal stability of immobilized enzyme have also been investigated. It has been observed that under the optimum conditions (Spo-E(0.3)), the specific activity of the immobilized lipase on the sporopollenin by adsorption was 16.3 U/mg protein, which is 0.46 times less than that of the free lipase (35.6 U/mg protein). The pH and temperature of immobilized enzyme were optimized, which were 6.0 and 40 °C respectively. Kinetic parameters Vmax and Km were also determined for the immobilized lipase. It was observed that there is an increase of the Km value (7.54 mM) and a decrease of the Vmax value (145.0 U/mg-protein) comparing with that of the free lipase.  相似文献   

19.
Both the periplasmic and the extracellular cellodextrinases from Bacteroides succinogenes S85 grown on Avicel microcrystalline cellulose were purified to homogeneity by column chromatography and characterized. Over 70% of the total cellobiosidase activity displayed by cells was accounted for by these enzymes. The periplasmic and extracellular cellodextrinases had identical molecular weights (50,000), as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and identical isoelectric points (4.9). In addition, the two enzymes were similar in catalytic properties, with Km and Vmax values of approximately 0.24 mM and 21 μmol/min per mg of protein, respectively. Examination of the two enzymes by using peptide mapping and immunoblotting techniques provided additional evidence indicating their identical nature. Immunoblotting of the extracellular culture fluid with affinity-purified antibody to the periplasmic cellodextrinase revealed one band with a molecular weight corresponding to that of the periplasmic cellodextrinase. The stability of the purified periplasmic cellodextrinase in aqueous solution was markedly enhanced by increased protein content. This enzyme showed a low affinity for crystalline cellulose.  相似文献   

20.
Ultrasound sonication has been utilized to produce fragmentation of chitosan polymer and hence increase the chitosan surface area, making it more accessible to interactions with proteins. In this context, we have investigated the catalytic properties of lipases from different sources immobilized onto ultrasound-treated chitosan (ChiS) pre-activated with glutaraldehyde (ChiS-G). Atomic force microscopy indicated that ChiS-G displays a more cohesive frame without the presence of sheared/fragmented structures when compared with ChiS, which might be attributed to the cross-linking of the polysaccharide chains. The immobilization efficiency onto ChiS-G and ChiS were remarkably higher than using conventional beads. In comparison with the free enzymes, lipases immobilized onto ChiS show a slight increase of apparent Km and decrease of apparent Vmax. On the other hand, immobilization onto ChiS-G resulted in an increase of Vmax, even though a slight increase of Km was also observed. These data suggest that the activation of chitosan with glutaraldehyde has beneficial effects on the activity of the immobilized lipases. In addition, the immobilization of the lipases onto ChiS-G displayed the best reusability results: enzymes retained more than 50% of its initial activity after four reuses, which might be attributed to the covalent attachment of enzyme to activated chitosan. Overall, our findings demonstrate that the immobilization of lipases onto ultrasound-treated chitosan supports is an effective and low-cost procedure for the generation of active immobilized lipase systems, being an interesting alternative to conventional chitosan beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号