首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast prions are self-perpetuating protein aggregates that are at the origin of heritable and transmissible non-Mendelian phenotypic traits. Among these, [PSI+], [URE3] and [PIN+] are the most well documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Fibril assembly depends on the presence of N- or C-terminal prion domains (PrDs) which are not homologous in sequence but share unusual amino-acid compositions, such as enrichment in polar residues (glutamines and asparagines) or the presence of oligopeptide repeats. Purified PrDs form amyloid fibrils that can convert prion-free cells to the prion state upon transformation. Nonetheless, isolated PrDs and full-length prion proteins have different aggregation, structural and infectious properties. In addition, mutations in the “non-prion” domains (non-PrDs) of Sup35p, Ure2p and Rnq1p were shown to affect their prion properties in vitro and in vivo. Despite these evidences, the implication of the functional non-PrDs in fibril assembly and prion propagation has been mostly overlooked. In this review, we discuss the contribution of non-PrDs to prion assemblies, and the structure-function relationship in prion infectivity in the light of recent findings on Sup35p and Ure2p assembly into infectious fibrils from our laboratory and others.Key words: prion, Sup35p, Ure2p, Rnq1p, [PSI+], [URE3], [PIN+], amyloid fibrils  相似文献   

2.
The aggregation of the two yeast proteins Sup35p and Ure2p is widely accepted as a model for explaining the prion propagation of the phenotypes [PSI+] and [URE3], respectively. Here, we demonstrate that the propagation of [URE3] cannot simply be the consequence of generating large aggregates of Ure2p, because such aggregation can be found in some conditions that are not related to the prion state of Ure2p. A comparison of [PSI+] and [URE3] aggregation demonstrates differences between these two prion mechanisms. Our findings lead us to propose a new unifying model for yeast prion propagation.  相似文献   

3.
As hamster scrapie cannot infect mice, due to sequence differences in their PrP proteins, we find “species barriers” to transmission of the [URE3] prion in Saccharomyces cerevisiae among Ure2 proteins of S. cerevisiae, paradoxus, bayanus, cariocanus, and mikatae on the basis of differences among their Ure2p prion domain sequences. The rapid variation of the N-terminal Ure2p prion domains results in protection against the detrimental effects of infection by a prion, just as the PrP residue 129 Met/Val polymorphism may have arisen to protect humans from the effects of cannibalism. Just as spread of bovine spongiform encephalopathy prion variant is less impaired by species barriers than is sheep scrapie, we find that some [URE3] prion variants are infectious to another yeast species while other variants (with the identical amino acid sequence) are not. The species barrier is thus prion variant dependent as in mammals. [URE3] prion variant characteristics are maintained even on passage through the Ure2p of another species. Ure2p of Saccharomyces castelli has an N-terminal Q/N-rich “prion domain” but does not form prions (in S. cerevisiae) and is not infected with [URE3] from Ure2p of other Saccharomyces. This implies that conservation of its prion domain is not for the purpose of forming prions. Indeed the Ure2p prion domain has been shown to be important, though not essential, for the nitrogen catabolism regulatory role of the protein.  相似文献   

4.
[URE3] and [PSI] are two non-Mendelian genetic elements discovered over 25 years ago and never assigned to a nucleic acid replicon. Their genetic properties led us to propose that they are prions, altered self-propagating forms of Ure2p and Sup35p, respectively, that cannot properly carry out the normal functions of these proteins. Ure2p is partially protease-resistant in [URE3] strains and Sup35p is aggregated specifically in [PSI] strains supporting this idea. Overexpression of Hsp104 cures [PSI], as does the absence of this protein, suggesting that the prion change of Sup35p in [PSI] strains is aggregation. Strains of [PSI], analogous to those described for scrapie, have now been described as well as an in vitro system for [PSI] propagation. Recently, two new potential prions have been described, one in yeast and the other in the filamentous fungus, Podospora.  相似文献   

5.
Two infectious proteins (prions) of Saccharomyces cerevisiae have been identified by their unusual genetic properties: (1) reversible curability, (2) de novo induction of the infectious prion form by overproduction of the protein, and (3) similar phenotype of the prion and mutation in the chromosomal gene encoding the protein. [URE3] is an altered infectious form of the Ure2 protein, a regulator of nitrogen catabolism, while [PSI] is a prion of the Sup35 protein, a subunit of the translation termination factor. The altered form of each is inactive in its normal function, but is able to convert the corresponding normal protein into the same altered inactive state. The N-terminal parts of Ure2p and Sup35p (the "prion domains") are responsible for prion formation and propagation and are rich in asparagine and glutamine residues. Ure2p and Sup35p are aggregated in vivo in [URE3]- and [PSI]-containing cells, respectively. The prion domains can form amyloid in vitro, suggesting that amyloid formation is the basis of these two prion diseases. Yeast prions can be cured by growth on millimolar concentrations of guanidine. An excess or deficiency of the chaperone Hsp104 cures the [PSI] prion. Overexpression of fragments of Ure2p or certain fusion proteins leads to curing of [URE3].  相似文献   

6.
《朊病毒》2013,7(4):277-284
Yeast prions are self-perpetuating protein aggregates that are at the origin of heritable and transmissible non-Mendelian phenotypic traits. Among these, [PSI+], [URE3] and [PIN+] are the most well documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Fibril assembly depends on the presence of N- or C-terminal prion domains (PrDs) which are not homologous in sequence but share unusual amino-acid compositions, such as enrichment in polar residues (glutamines and asparagines) or the presence of oligopeptide repeats. Purified PrDs form amyloid fibrils that can convert prion-free cells to the prion state upon transformation. Nonetheless, isolated PrDs and full-length prion proteins have different aggregation, structural and infectious properties. In addition, mutations in the “non-prion” domains (non-PrDs) of Sup35p, Ure2p and Rnq1p were shown to affect their prion properties in vitro and in vivo. Despite these evidences, the implication of the functional non-PrDs in fibril assembly and prion propagation has been mostly overlooked. In this review, we discuss the contribution of non-PrDs to prion assemblies, and the structure-function relationship in prion infectivity in the light of recent findings on Sup35p and Ure2p assembly into infectious fibrils from our laboratory and others.  相似文献   

7.
[URE3] is a prion of the yeast Ure2 protein. Hsp40 is a cochaperone that regulates Hsp70 chaperone activity. When overexpressed, the Hsp40 Ydj1p cures yeast of [URE3], but the Hsp40 Sis1p does not. On the basis of biochemical data Ydj1p has been proposed to cure [URE3] by binding soluble Ure2p and preventing it from joining prion aggregates. Here, we mutagenized Ydj1p and find that disrupting substrate binding, dimerization, membrane association, or ability to transfer substrate to Hsp70 had little or no effect on curing. J-domain point mutations that disrupt functional interactions of Ydj1p with Hsp70 abolished curing, and the J domain alone cured [URE3]. Consistent with heterologous J domains possessing similar Hsp70 regulatory activity, the Sis1p J domain also cured [URE3]. We further show that Ydj1p is not essential for [URE3] propagation and that depletion of Ure2p is lethal in cells lacking Ydj1p. Our data imply that curing of [URE3] by overproduced Ydj1p does not involve direct interaction of Ydj1p with Ure2p but rather works through regulation of Hsp70 through a specific J-protein/Hsp70 interaction.  相似文献   

8.
Prions (infectious proteins) analogous to the scrapie agent have been identified in Saccharomyces cerevisiae and Podospora anserina based on their special genetic characteristics. Each is a protein acting as a gene, much like nucleic acids have been shown to act as enzymes. The [URE3], [PSI+], [PIN+] and [Het-s] prions are self-propagating amyloids of Ure2p, Sup35p, Rnq1p and the HET-s protein, respectively. The [β] and [C] prions are enzymes whose precursor activation requires their own active form. [URE3] and [PSI+] are clearly diseases, while [Het-s] and [β] carry out normal cell functions. Surprisingly, the prion domains of Ure2p and Sup35p can be randomized without loss of ability to become a prion. Thus amino acid content and not sequence determine these prions. Shuffleability also suggests amyloids with a parallel in-register β-sheet structure.Key Words: Ure2, Sup35, Rnq1, HETs, PrP, prion, amyloid  相似文献   

9.
Yeast Prions     
《朊病毒》2013,7(2):94-100
Prions (infectious proteins) analogous to the scrapie agent have been identified in Saccharomyces cerevisiae and Podospora anserina based on their special genetic characteristics. Each is a protein acting as a gene, much like nucleic acids have been shown to act as enzymes. The [URE3], [PSI+], [PIN+] and [Het-s] prions are self-propagating amyloids of Ure2p, Sup35p, Rnq1p and the HET-s protein, respectively. The [b] and [C] prions are enzymes whose precursor activation requires their own active form. [URE3] and [PSI+] are clearly diseases, while [Het-s] and [b] carry out normal cell functions. Surprisingly, the prion domains of Ure2p and Sup35p can be randomized without loss of ability to become a prion. Thus amino acid content and not sequence determine these prions. Shuffleability also suggests amyloids with a parallel in-register b-sheet structure.  相似文献   

10.
The [URE3] and [PSI+] prions are the infections amyloid forms of the Saccharomyces cerevisiae proteins Ure2p and Sup35p, respectively. Randomizing the order of the amino acids in the Ure2 and Sup35 prion domains while retaining amino acid composition does not block prion formation, indicating that amino acid composition, not primary sequence, is the predominant feature driving [URE3] and [PSI+] formation. Here we show that Ure2p promiscuously interacts with various compositionally similar proteins to influence [URE3] levels. Overexpression of scrambled Ure2p prion domains efficiently increases de novo formation of wild-type [URE3] in vivo. In vitro, amyloid aggregates of the scrambled prion domains efficiently seed wild-type Ure2p amyloid formation, suggesting that the wild-type and scrambled prion domains can directly interact to seed prion formation. To test whether interactions between Ure2p and naturally occurring yeast proteins could similarly affect [URE3] formation, we identified yeast proteins with domains that are compositionally similar to the Ure2p prion domain. Remarkably, all but one of these domains were also able to efficiently increase [URE3] formation. These results suggest that a wide variety of proteins could potentially affect [URE3] formation.AMYLOID fibril formation is associated with numerous human diseases, including Alzheimer''s disease, type II diabetes, and the transmissible spongiform encephalopathies. Yeast prions provide a powerful model system for examining amyloid fibril formation in vivo. [URE3] and [PSI+] are the prion forms of the Saccharomyces cerevisiae proteins Ure2p and Sup35p, respectively (Wickner 1994). In both cases, prion formation is thought to result from conversion of the native protein into an inactive amyloid form (Glover et al. 1997; King et al. 1997; Taylor et al. 1999). Both proteins contain an N-terminal glutamine/asparagine (Q/N)-rich prion-forming domain (PFD) and a C-terminal functional domain (Ter-Avanesyan et al. 1993; Ter-Avanesyan et al. 1994; Masison and Wickner 1995; Liebman and Derkatch 1999; Maddelein and Wickner 1999). Sup35p contains an additional highly charged middle domain (M) that is not required either for prion formation or for normal protein function, but stabilizes [PSI+] aggregates (Liu et al. 2002).Amyloid fibril formation is thought to occur through a seeded polymerization mechanism. In vitro, amyloid fibril formation from native proteins is generally characterized by a significant lag time, thought to result from the slow rate of formation of amyloid nuclei; addition of a small amount of preformed amyloid aggregates (seeds) eliminates the lag time, resulting in rapid polymerization (Glover et al. 1997; Taylor et al. 1999; Serio et al. 2000).Despite considerable study, the mechanism by which amyloid seeds initially form is unclear. At least some of the amyloid proteins involved in human disease can interact with unrelated amyloidogenic proteins, resulting in cross-seeding and modulation of toxicity. Injecting mice with amyloid-like fibrils formed by a variety of short synthetic peptides promotes amyloid formation by amyloid protein A, a protein whose deposition is found in systemic AA amyloidosis (Johan et al. 1998). In yeast, [PSI+] and [PIN+], the prion form of the protein Rnq1p (Sondheimer and Lindquist 2000; Derkatch et al. 2001), both promote the aggregation of and increase toxicity of expanded polyglutamine tracts, like those seen in Huntington''s disease (Osherovich and Weissman 2001; Meriin et al. 2002; Derkatch et al. 2004; Gokhale et al. 2005; Duennwald et al. 2006); however, in Drosophila, [PSI+] aggregates reduce polyglutamine toxicity (Li et al. 2007). Thus, interactions between heterologous amyloidogenic proteins can influence amyloid formation both positively and negatively in vivo.A variety of interactions have been observed among the yeast prions. Under normal cellular conditions, efficient formation, but not maintenance, of [PSI+] requires the presence of [PIN+] (Derkatch et al. 2000). Overexpression of various Q/N-rich proteins can effectively substitute for [PIN+], allowing [PSI+] formation in cells lacking [PIN+] (Derkatch et al. 2001; Osherovich and Weissman 2001). In vitro and in vivo evidence suggest that the ability of [PIN+] to facilitate [PSI+] formation is the result of a direct interaction between Rnq1p aggregates and Sup35p (Derkatch et al. 2004; Bardill and True 2009; Choe et al. 2009). [PIN+] also increases the frequency of [URE3] formation, while [PSI+] inhibits [URE3] formation (Bradley et al. 2002; Schwimmer and Masison 2002).It is unclear whether the ability of Ure2p, Sup35p, and Rnq1p to cross-react is an intrinsic feature of all similar amyloidogenic proteins, or whether it has specifically evolved to regulate prion formation. There is debate as to whether yeast prion formation is a beneficial phenomenon, allowing for regulation of the activity of the prion protein (True and Lindquist 2000; True et al. 2004), or a deleterious event analogous to human amyloid disease (Nakayashiki et al. 2005). Either way, it is likely that interactions between the yeast prion proteins have specifically evolved, either to minimize the detrimental effects of amyloid formation or to regulate beneficial amyloid formation.For both Ure2p and Sup35p, the amino acid composition of the PFD is the predominant feature that drives prion formation. Scrambled versions of Ure2p and Sup35p (in which the order of the amino acids in the PFD was randomized while maintaining amino acid composition) are able to form prions when expressed in yeast as the sole copy Ure2p or Sup35p (Ross et al. 2004, 2005). To examine whether amino acid composition can similarly drive interactions between heterologous proteins, we tested whether the scrambled PFDs can interact with their wild-type counterparts to stimulate prion formation. When overexpressed, scrambled Ure2 PFDs promoted de novo prion formation by wild-type Ure2p, suggesting that the Ure2p PFD can promiscuously interact with compositionally similar PFDs during prion formation. When we searched the yeast proteome for proteins with regions of high compositional similarity to Ure2p, four of the top five proteins were able to efficiently stimulate [URE3] formation. However, there were limits to this promiscuity; overexpression of wild-type or scrambled Sup35 PFDs did not increase [URE3] levels. We propose that this ability to promiscuously interact may have evolved as a mechanism to regulate Ure2p activity and/or prion formation.  相似文献   

11.
Shewmaker F  Ross ED  Tycko R  Wickner RB 《Biochemistry》2008,47(13):4000-4007
The [URE3] and [PSI (+)] prions of Saccharomyces cerevisiae are self-propagating amyloid forms of Ure2p and Sup35p, respectively. The Q/N-rich N-terminal domains of each protein are necessary and sufficient for the prion properties of these proteins, forming in each case their amyloid cores. Surprisingly, shuffling either prion domain, leaving amino acid content unchanged, does not abrogate the ability of the proteins to become prions. The discovery that the amino acid composition of a polypeptide, not the specific sequence order, determines prion capability seems contrary to the standard folding paradigm that amino acid sequence determines protein fold. The shuffleability of a prion domain further suggests that the beta-sheet structure is of the parallel in-register type, and indeed, the normal Ure2 and Sup35 prion domains have such a structure. We demonstrate that two shuffled Ure2 prion domains capable of being prions form parallel in-register beta-sheet structures, and our data indicate the same conclusion for a single shuffled Sup35 prion domain. This result confirms our inference that shuffleability indicates parallel in-register structure.  相似文献   

12.
The yeast [PSI(+)], [URE3], and [PIN(+)] genetic elements are prion forms of Sup35p, Ure2p, and Rnq1p, respectively. Overexpression of Sup35p, Ure2p, or Rnq1p leads to increased de novo appearance of [PSI(+)], [URE3], and [PIN(+)], respectively. This inducible appearance of [PSI(+)] was shown to be dependent on the presence of [PIN(+)] or [URE3] or overexpression of other yeast proteins that have stretches of polar residues similar to the prion-determining domains of the known prion proteins. In a similar manner, [PSI(+)] and [URE3] facilitate the appearance of [PIN(+)]. In contrast to these positive interactions, here we find that in the presence of [PIN(+)], [PSI(+)] and [URE3] repressed each other's propagation and de novo appearance. Elevated expression of Hsp104 and Hsp70 (Ssa2p) had little effect on these interactions, ruling out competition between the two prions for limiting amounts of these protein chaperones. In contrast, we find that constitutive overexpression of SSA1 but not SSA2 cured cells of [URE3], uncovering a specific interaction between Ssa1p and [URE3] and a functional distinction between these nearly identical Hsp70 isoforms. We also find that Hsp104 abundance, which critically affects [PSI(+)] propagation, is elevated when [URE3] is present. Our results are consistent with the notion that proteins that have a propensity to form prions may interact with heterologous prions but, as we now show, in a negative manner. Our data also suggest that differences in how [PSI(+)] and [URE3] interact with Hsp104 and Hsp70 may contribute to their antagonistic interactions.  相似文献   

13.
The yeast prions [URE3] and [PSI] are not found in wild strains, suggesting they are not an advantage. Prion-forming ability is not conserved, even within Saccharomyces, suggesting it is a disease. Prion domains have non-prion functions, explaining some conservation of sequence. However, in spite of the sequence being constrained in evolution by these non-prion functions, the prion domains vary more rapidly than the remainder of the molecule, and these changes produce a transmission barrier, suggesting that these changes were selected to block prion infection. Yeast prions [PSI] and [URE3] induce a cellular stress response (Hsp104 and Hsp70 induction), suggesting the cells are not happy about being infected. Recently, we showed that the array of [PSI] and [URE3] prions includes a majority of lethal or very toxic variants, a result not expected if either prion were an adaptive cellular response to stress.Key words: [URE3], [PSI+], prion, Sup35p, Ure2pfMammalian prions are uniformly fatal, but a lethal yeast prion would not be detected by the usual procedure, which requires growth of a colony under some selective condition. As a result, the prion variants commonly studied are quite mild in their effects. This circumstance has led to the suggestion that yeast prions actually benefit their host. Sup35p, the translation termination subunit whose amyloid becomes the [PSI+] prion, is essential for growth and Ure2p, the nitrogen regulation protein whose amyloid constitutes the [URE3] prion, is important for growth, with ure2 mutants showing noticeably slowed growth.When yeast prions were discovered,1 we assumed they were diseases, by analogy with the mammalian diseases and the many non-prion amyloid diseases. Inactivating the essential Sup35p or the desireable Ure2p did not seem like a useful strategy. While control of either protein''s activity might be advantageous, and Ure2p activity control is the key to regulation of nitrogen catabolism, prion formation is a stochastic process, so it makes control of activity of these proteins random instead of appropriate to the circumstances. The [Het-s] prion changed that picture.2 Here was a prion necessary for a normal function, heterokaryon incompatibility, and we suggested that it was the first beneficial prion.3  相似文献   

14.
The yeast Saccharomyces cerevisiae contains in its proteome at least three prion proteins. These proteins (Ure2p, Sup35p, and Rnq1p) share a set of remarkable properties. In vivo, they form aggregates that self-perpetuate their aggregation. This aggregation is controlled by Hsp104, which plays a major role in the growth and severing of these prions. In vitro, these prion proteins form amyloid fibrils spontaneously. The introduction of such fibrils made from Ure2p or Sup35p into yeast cells leads to the prion phenotypes [URE3] and [PSI], respectively. Previous studies on evolutionary biology of yeast prions have clearly established that [URE3] is not well conserved in the hemiascomycetous yeasts and particularly in S. paradoxus. Here we demonstrated that the S. paradoxus Ure2p is able to form infectious amyloid. These fibrils are more resistant than S. cerevisiae Ure2p fibrils to shear force. The observation, in vivo, of a distinct aggregation pattern for GFP fusions confirms the higher propensity of SpUre2p to form fibrillar structures. Our in vitro and in vivo analysis of aggregation propensity of the S. paradoxus Ure2p provides an explanation for its loss of infective properties and suggests that this protein belongs to the non-prion amyloid world.  相似文献   

15.
Scrambled prion domains form prions and amyloid   总被引:1,自引:0,他引:1       下载免费PDF全文
The [URE3] prion of Saccharomyces cerevisiae is a self-propagating amyloid form of Ure2p. The amino-terminal prion domain of Ure2p is necessary and sufficient for prion formation and has a high glutamine (Q) and asparagine (N) content. Such Q/N-rich domains are found in two other yeast prion proteins, Sup35p and Rnq1p, although none of the many other yeast Q/N-rich domain proteins have yet been found to be prions. To examine the role of amino acid sequence composition in prion formation, we used Ure2p as a model system and generated five Ure2p variants in which the order of the amino acids in the prion domain was randomly shuffled while keeping the amino acid composition and C-terminal domain unchanged. Surprisingly, all five formed prions in vivo, with a range of frequencies and stabilities, and the prion domains of all five readily formed amyloid fibers in vitro. Although it is unclear whether other amyloid-forming proteins would be equally resistant to scrambling, this result demonstrates that [URE3] formation is driven primarily by amino acid composition, largely independent of primary sequence.  相似文献   

16.
Amyloid fibril formation is associated with a range of neurodegenerative diseases in humans, including Alzheimer’s, Parkinson’s, and prion diseases. In yeast, amyloid underlies several non-Mendelian phenotypes referred to as yeast prions. Mechanism of amyloid formation is critical for a complete understanding of the yeast prion phenomenon and human amyloid-related diseases. Ure2 protein is the basis of yeast prion [URE3]. The Ure2p prion domain is largely disordered. Residual structures, if any, in the disordered region may play an important role in the aggregation process. Studies of Ure2p prion domain are complicated by its high aggregation propensity, which results in a mixture of monomer and aggregates in solution. Previously we have developed a solid-support electron paramagnetic resonance (EPR) approach to address this problem and have identified a structured state for the Alzheimer’s amyloid-β monomer. Here we use solid-support EPR to study the structure of Ure2p prion domain. EPR spectra of Ure2p prion domain with spin labels at every fifth residue from position 10 to position 75 show similar residue mobility profile for denaturing and native buffers after accounting for the effect of solution viscosity. These results suggest that Ure2p prion domain adopts a completely disordered structure in the native buffer. A completely disordered Ure2p prion domain implies that the amyloid formation of Ure2p, and likely other Q/N-rich yeast prion proteins, is primarily driven by inter-molecular interactions.  相似文献   

17.
Two Prion-Inducing Regions of Ure2p Are Nonoverlapping   总被引:1,自引:0,他引:1       下载免费PDF全文
Ure2p of Saccharomyces cerevisiae normally functions in blocking utilization of a poor nitrogen source when a good nitrogen source is available. The non-Mendelian genetic element [URE3] is a prion (infectious protein) form of Ure2p, so that overexpression of Ure2p induces the de novo appearance of infectious [URE3]. Earlier studies defined a prion domain comprising Ure2p residues 1 to 64 and a nitrogen regulation domain included in residues 66 to 354. We find that deletion of individual runs of asparagine within the prion domain reduce prion-inducing activity. Although residues 1 to 64 are sufficient for prion induction, the fragment from residues 1 to 80 is a more efficient inducer of [URE3]. In-frame deletion of a region around residue 224 does not affect nitrogen regulation but does eliminate prion induction by the remainder of Ure2p. Larger deletions removing the region around residue 224 and more of the C-terminal part of Ure2p restore prion-inducing ability. A fragment of Ure2p lacking the original prion domain does not induce [URE3], but surprisingly, further deletion of residues 151 to 157 and 348 to 354 leaves a fragment that can do so. The region from 66 to 80 and the region around residue 224 are both necessary for this second prion-inducing activity. Thus, each of two nonoverlapping parts of Ure2p is sufficient to induce the appearance of the [URE3] prion.  相似文献   

18.
Saccharomyces cerevisiae is an occasional host to an array of prions, most based on self-propagating, self-templating amyloid filaments of a normally soluble protein. [URE3] is a prion of Ure2p, a regulator of nitrogen catabolism, while [PSI +] is a prion of Sup35p, a subunit of the translation termination factor Sup35p. In contrast to the functional prions, [Het-s] of Podospora anserina and [BETA] of yeast, the amyloid-based yeast prions are rare in wild strains, arise sporadically, have an array of prion variants for a single prion protein sequence, have a folded in-register parallel β-sheet amyloid architecture, are detrimental to their hosts, arouse a stress response in the host, and are subject to curing by various host anti-prion systems. These characteristics allow a logical basis for distinction between functional amyloids/prions and prion diseases. These infectious yeast amyloidoses are outstanding models for the many common human amyloid-based diseases that are increasingly found to have some infectious characteristics.  相似文献   

19.
The [URE3] and [PSI(+)] prions are infectious amyloid forms of Ure2p and Sup35p. Several chaperones influence prion propagation: Hsp104p overproduction destabilizes [PSI(+)], whereas [URE3] is sensitive to excess of Ssa1p or Ydj1p. Here, we show that overproduction of the chaperone, Sse1p, can efficiently cure [URE3]. Sse1p and Fes1p are nucleotide exchange factors for Ssa1p. Interestingly, deletion of either SSE1 or FES1 completely blocked [URE3] propagation. In addition, deletion of SSE1 also interfered with [PSI(+)] propagation.  相似文献   

20.
[URE3] is a non-Mendelian genetic element of the yeast Saccharomyces cerevisiae, an altered prion form of Ure2 protein. We show that recombinant Ure2p is a soluble protein that can assemble in vitro into dimers, tetramers, and octamers or form insoluble fibrils observed for PrP in its filamentous form or for Sup35p upon self-assembling, suggesting a similar mechanism for all prions. Computational, genetic, biochemical, and structural data allow us to specify a new boundary between the so-called prion-forming and nitrogen regulator (catalytic) domains of the protein and to map this boundary to Met-94. We bring strong evidence that the COOH-terminal (94-354) part of the protein forms a tightly folded domain, while the NH2-terminal (1-94) part is unstructured. These domains (or various parts of these domains) were shown (by means of the two-hybrid system approach and affinity binding experiments) to interact with each other (both in vivo and in vitro). We bring also evidence that the COOH-terminal (94-354) catalytically active part of the protein can be synthesized (both in vitro and in vivo) via an internal ribosome-binding mechanism, independently of the production of the full-length protein. We finally show that Ure2p aggregation in vivo (monitored by fluorescence of Ure2p--GFP fusion) does not necessarily give rise to [URE3] phenotype. The significance of these findings for the appearance and propagation of the yeast prion [URE3] is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号