首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The nucleolar proteins which link cell proliferation to ribosome biogenesis are regarded to be potentially oncogenic. Here, in order to examine the involvement of an evolutionary conserved nucleolar protein SURF6/Rrp14 in proliferation and ribosome biogenesis in mammalian cells, we established stably transfected mouse NIH/3T3 fibroblasts capable of conditional overexpression of the protein. Cell proliferation was monitored in real-time, and various cell cycle parameters were quantified based on flow cytometry, Br-dU-labeling and conventional microscopy data. We show that overexpression of SURF6 accelerates cell proliferation and promotes transition through all cell cycle phases. The most prominent SURF6 pro-proliferative effects include a significant reduction of the population doubling time, from 19.8 ± 0.7 to 16.2 ± 0.5 hours (t-test, p < 0.001), and of the length of cell division cycle, from 17.6 ± 0.6 to 14.0 ± 0.4 hours (t-test, p < 0.001). The later was due to the shortening of all cell cycle phases but the length of G1 period was reduced most, from 5.7 ± 0.4 to 3.8 ± 0.3 hours, or by ~30%, (t-test, p < 0.05). By Northern blots and qRT-PCR, we further showed that the acceleration of cell proliferation was concomitant with an accumulation of rRNA species along both ribosomal subunit maturation pathways. It is evident, therefore, that like the yeast homologue Rrp14, mammalian SURF6 is involved in various steps of rRNA processing during ribosome biogenesis. We concluded that SURF6 is a novel positive regulator of proliferation and G1/S transition in mammals, implicating that SURF6 is a potential oncogenic protein, which can be further studied as a putative target in anti-cancer therapy.  相似文献   

7.
Basigin is a member of the immunoglobulin superfamily and a key molecule related to mouse blastocyst implantation. Whether preimplantation mouse embryos express basigin mRNA is still unknown. The aim of this study was to use a quantitative competitive polymerase chain reaction to assess quantitatively the levels of basigin mRNA in mouse oocyte and preimplantation embryos. Basigin mRNA was detected in the oocyte and all the stages of preimplantation embryos. The levels of basigin mRNA were 0.0606 +/- 0.0282 in the oocyte, 0.0102 +/- 0.0036 in the zygote, 0.0007 +/- 0.0003 in the 2-cell embryo, 0.0031 +/- 0.0017 in the 4-cell embryo, 0.0084 +/- 0.0024 in the 8-cell embryo, 0.0537 +/- 0.0121 in the morula and 0.0392 +/- 0.0161 attomoles in the blastocyst, respectively. The levels of basigin mRNA in the oocyte, morula and blastocyst were significantly higher than those in the zygote and embryos at the 2-cell, 4-cell and 8-cell stages. The high level of basigin expression in the blastocyst may play a role during embryo implantation.  相似文献   

8.
9.
Preimplantation embryos utilize mitogen-activated protein kinase signaling (MAPK) pathways to relay signals from the external environment to prepare appropriate responses and adaptations to a changing milieu. It is therefore important to investigate how MAPK pathways are regulated during preimplantation development. This study was conducted to investigate whether PP2Cdelta (Ppm1d, WIP1) is expressed during mouse preimplantation development and to determine the influences of p38 MAPK inhibition on expression of Trp53 (p53), Ppm1d, (WIP1), and Cdkn2a (p16) during mouse preimplantation development. Our results indicate that Trp53, Ppm1d, and Cdkn2a mRNAs and TRP53 and PP2Cdelta proteins are expressed throughout mouse preimplantation development. Treatment of 2-cell embryos with SB220025 (potent inhibitor of p38 MAPK alpha/beta/MAPK 14/11) significantly increased Trp53, Ppm1d and Cdkn2a and Mapk14 mRNA levels at 12 and 24 hr. Treatment of 8-cell embryos with SB220025 for 12 hr increased Trp53, Ppm1d, and Cdkn2a mRNA levels, but not Mapk14 mRNA levels. Treatment of 8-cell embryos for 24 hr increased Trp53, and Ppm1d mRNA levels, but decreased Cdkn2a and Mapk14 mRNA levels. Therefore, blockade of p38 MAPK activity is associated with embryo stage specific influences on Trp53, Ppm1d, Cdkn2a, and Mapk14 expression during mouse preimplantation development. These results define downstream targets of p38 MAPK during preimplantation development and indicate that the p38 MAPK pathway regulates Trp53, Ppm1d, and Cdkn2a expression. This study increases our understanding of the mechanisms controlling preimplantation development and of the interactions between preimplantation embryos and their culture environments.  相似文献   

10.
11.
Cell-cell interactions play a major role during preimplantation development of the mouse embryo. The formation of adherens junctions is a major feature of compaction, the first morphogenetic event that takes place at the 8-cell stage. Then, during the following two cell cycles, tight junctions form, and the outer layer of cells differentiate into a functional epithelium, leading to the formation of the blastocoel cavity. Until now, E-cadherin was the only transmembrane molecule localized in adherens junctions and required for early development. Vezatin is a transmembrane protein of adherens junctions, interacting with the E-cadherin-catenins complex. Here, we show that vezatin is expressed very early during mouse preimplantation development. It co-localizes with E-cadherin throughout development, being found all around the cell cortex before compaction and basolaterally in adherens junctions thereafter. In addition, vezatin is also detected in nuclei during most of the cell cycle. Finally, using a morpholino-oligonucleotide approach to inhibit vezatin function during preimplantation development, we observed that inhibition of vezatin synthesis leads to a cell cycle arrest with limited cell-cell interactions. This phenotype can be rescued when mRNAs coding for vezatin missing the 5'UTR are co-injected with the anti-vezatin morpholino-oligonucleotide. Cells derived from blastomeres injected with morpholino-oligonucleotide had a reduced amount of vezatin concomitantly with a decrease in the quantity of E-cadherin and beta-catenin localized in the areas of intercellular contact. Shift in E-cadherin cortical distribution was correlated with a strong decrease in E-cadherin mRNA and protein contents. Altogether, these observations demonstrate that vezatin is required for morphogenesis of the preimplantation mouse embryo.  相似文献   

12.
Cow oocytes and preimplantation embryos were cultured in medium containing radiolabelled methionine and the proteins synthesized were analysed by one-dimensional electrophoresis and fluorography. Marked changes in the pattern of synthesis were observed at the 8-16-cell stage of development. Quantitatively, a gradual decrease in the rate of protein synthesis occurred between the zygote and 8-cell stage and then the rate increased progressively to the blastocyst stage. Incorporation of radiolabelled uridine into RNA was first detected at the 16-cell stage. Taken together, these results suggest that protein synthesis is programmed by maternal mRNA up to the 8-cell stage but switches to mRNA derived from the zygote genome between the 8- and 16-cell stage.  相似文献   

13.
Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.  相似文献   

14.
15.
16.
17.
Accurate reprogramming of DNA methylation occurring in preimplantation embryos is critical for normal development of both fetus and placenta. Environmental stresses imposed on oocytes usually cause the abnormal DNA methylation reprogramming of early embryos. However, whether oocyte vitrification alters the reprogramming of DNA methylation (5 mC) and its derivatives in mouse preimplantation embryo development remains largely unknown. Here, we found that the rate of cleavage and blastocyst formation of embryos produced by IVF of vitrified matured oocytes was significantly lower than that in control counterparts, but the quality of blastocysts was not impaired by oocyte vitrification. Additionally, although vitrification neither altered the dynamic changes of 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5 fC) before 4-cell stage nor affected the levels of 5 mC and 5-carboxylcytosine (5caC) throughout the preimplantation development, vitrification significantly reduced the levels of 5hmC and 5 fC from 8-cell stage onwards. Correspondingly, vitrification did not alter the expression patterns of Tet3 in preimplantation embryos but apparently reduced the expression levels of Tet1 in 4-cell and 8-cell embryos and increased the expression levels of Tet2 at morula stage. Taken together, these results demonstrate that oocyte vitrification perturbs DNA methylation reprogramming in mouse preimplantation embryo development.  相似文献   

18.
19.
Fucosylated glycoconjugates in mouse preimplantation embryos   总被引:1,自引:0,他引:1  
Preimplantation mouse embryos were metabolically labelled with 3H or 14C-fucose to investigate the synthesis of fucosylated macromolecules. Scintillation counting revealed that there was a progressive increase in both total fucose taken up by the embryo and incorporation of fucose into TCA-precipitable material as embryos developed from the 4-cell to the blastocyst stage. This was reflected in the increasing intensity of bands on autoradiographs of radioactive fucose labelled proteins separated on 10% SDS-PAGs between the 4-cell embryo (at which stage bands were first detectable) and the blastocyst. Minor qualitative changes in fucoproteins were detected at the time of compaction and additional bands appeared at the blastocyst stage. Preliminary analysis of fucolipids in 6- to 8-cell embryos indicated that an approximately equal amount of fucose was incorporated into lipid and protein. Autoradiographs of semi-thin sections of 3H-fucose-labelled embryos showed substantial amounts of radioactive material in the vicinity of the plasma membrane both adjacent to other cells and facing the zona pellucida. These data would support a predominant role for fucoconjugates in cell surface events in the preimplantation embryo from the 8-cell stage.  相似文献   

20.
JY Zhang  YF Diao  HR Kim  DI Jin 《PloS one》2012,7(7):e40433
X-box binding protein-1 (XBP-1) is an important regulator of a subset of genes during endoplasmic reticulum (ER) stress. In the current study, we analyzed endogenous XBP-1 expression and localization, with a view to determining the effects of ER stress on the developmental competency of preimplantation embryos in mice. Fluorescence staining revealed that functional XBP-1 is localized on mature oocyte spindles and abundant in the nucleus at the germinal vesicle (GV) stage. However, in preimplantation embryos, XBP-1 was solely detected in the cytoplasm at the one-cell stage. The density of XBP-1 was higher in the nucleus than the cytoplasm at the two-cell, four-cell, eight-cell, morula, and blastocyst stages. Furthermore, RT-PCR analysis confirmed active XBP-1 mRNA splicing at all preimplantation embryo stages, except the one-cell stage. Tunicamycin (TM), an ER stress inducer used as a positive control, promoted an increase in the density of nuclear XBP-1 at the one-cell and two-cell stages. Similarly, culture medium supplemented with 25 mM sorbitol displayed a remarkable increase active XBP-1 expression in the nuclei of 1-cell and 2-cell embryos. Conversely, high concentrations of TM or sorbitol led to reduced nuclear XBP-1 density and significant ER stress-induced apoptosis. Tauroursodeoxycholic acid (TUDCA), a known inhibitor of ER stress, improved the rate of two-cell embryo development to blastocysts by attenuating the expression of active XBP-1 protein in the nucleus at the two-cell stage. Our data collectively suggest that endogenous XBP-1 plays a role in normal preimplantation embryonic development. Moreover, XBP-1 splicing is activated to generate a functional form in mouse preimplantation embryos during culture stress. TUDCA inhibits hyperosmolar-induced ER stress as well as ER stress-induced apoptosis during mouse preimplantation embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号