首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Eighteen genes of Autographa californica nuclear polyhedrosis virus are necessary and sufficient to transactivate expression from the late vp39 promoter in transient-expression assays in SF-21 cells. These 18 genes, known as late expression factor genes (lefs), are also required to transactivate the very late promoter of the polyhedrin gene, polh, but expression from this promoter is relatively weak compared with expression from the vp39 promoter. To further define the factors required for late and very late promoter expression, we first determined that the eighteen lefs were also required for expression from two other major baculovirus promoters: the late basic 6.9-kDa protein gene, p6.9, and the very late 10-kDa protein gene, p10. We next examined the effect of the very late expression factor 1 gene (vlf-1), a gene previously identified by analysis of a temperature-sensitive mutant, in the transient expression assay and found that vlf-1 specifically transactivated the two very late promoters but not the two late promoters. We then surveyed the Autographa californica nuclear polyhedrosis virus genome for additional genes which might specifically regulate very late gene expression; no additional vlf genes were detected, suggesting that VLF-1 is the primary regulator of very late gene expression. Finally, we found that the relative contribution of the antiapoptosis gene p35, which behaves as a lef in these transient-expression assays, depended on the nature of the other viral genes provided in the cotransfection mixtures, suggesting that other viral genes also contribute to the ability of the virus to block apoptosis.  相似文献   

3.
4.
5.
6.
A Lu  L K Miller 《Journal of virology》1995,69(10):6265-6272
A plasmid library of 18 late expression factor (LEF) genes (LEF library) from the baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV) supports transient expression from a late viral promoter in the SF-21 cell line, derived from Spodoptera frugiperda. We found, however, that this LEF library was unable to support expression from the same promoter in the TN-368 cell line, derived from Trichoplusia ni, which is also permissive for AcMNPV replication. To identify the additional factor(s) required for expression in TN-368 cells, we cotransfected the LEF library with clones representing portions of the AcMNPV genome not represented in the LEF library. A single additional gene was identified; this gene corresponded to ORF70 of the complete AcMNPV sequence and potentially encodes a 34-kDa cysteine-rich polypeptide. Because of its differential effect on late gene expression in the two cell lines, we renamed ORF70 hcf-1 (for host cell-specific factor 1). hcf-1 was involved in expression from reporter plasmids under late and very late but not early promoter control, indicating that it was also a LEF gene. Plasmid DNA replication assays indicated that HCF-1 was involved in virus origin-specific DNA replication in TN-368 cells. Three LEF genes, ie-2, lef-7, and p35, required for optimal virus origin-specific plasmid DNA replication or stability in SF-21 cells had little or no influence in TN-368 cells. Thus, as determined by transient-expression assays, cell line-specific and potentially host-specific factors are required for origin-specific DNA replication or stability.  相似文献   

7.
8.
R J Clem  M Robson    L K Miller 《Journal of virology》1994,68(10):6759-6762
The infectivity of Autographa californica nuclear polyhedrosis virus mutants lacking the apoptosis-inhibiting gene p35 is decreased 1,000-fold or more in larvae of the insect Spodoptera frugiperda if the budded form of the virus is administered by hemocoelic injection; this decrease is correlated with the antiviral effects of apoptosis (R. J. Clem and L. K. Miller, J. Virol. 67:3730-3738, 1993). We have extended this correlation by showing that the infectivity of p35 mutant budded virus is restored to wild-type levels by expression of an unrelated baculovirus apoptosis-inhibiting gene, Cp-iap. We have also examined the oral infectivity of the occluded form of mutants lacking p35, the neighboring p94 gene, or both genes by feeding insects occluded virus. The oral infectivity of the p35 mutant was significantly reduced in S. frugiperda larvae, but this reduction (25-fold) was less than that observed for the hemocoelic route of infection (1,000-fold). The disruption of p94 alone had no apparent effect on infectivity by either route. Unexpectedly, however, the disruption of both p35 and p94 restored oral infectivity to nearly wild-type levels but did not exert this compensatory effect on infectivity by hemocoelic injection. Thus, the infectivity of the double p35/p94 mutant is affected in a route-specific manner in S. frugiperda larvae, suggesting a tissue-specific response to p35 and/or p94. Infectivity in a different host, Trichoplusia ni, was unaffected by all the mutants tested, consistent with previous studies indicating a lack of sensitivity to apoptosis in this species. However, T. ni and S. frugiperda larvae infected with p35 mutants failed to exhibit the symptom of morphological disintegration ("melting") typical of a wild-type infection, suggesting that p35 is required for the infection of some tissues in both species.  相似文献   

9.
N H Battey  N C James    A J Greenland 《Plant physiology》1996,112(3):1391-1396
The isolation, cloning, and sequencing of two full-length cDNAs corresponding to the root tip forms of the maize (Zea mays L. cv Clipper) annexins p33 and p35 are described. These are the first complete sequences for the widely reported doublet of plant annexins. The predicted sequences can be divided into four repeat domains characteristic of the annexin family, but Ca2+ binding by the type-II site typical of annexins would be predicted to occur only in repeats 1 and 4. This reduced number of sites is consistent with previously reported biochemical data indicating a high Ca2+ requirement for membrane association. Although the two annexins are very similar (80% amino acid identity), their genes are quite distinct, as demonstrated by their different 3' noncoding regions and Southern blotting. The predicted sequences of the root tip proteins are very similar to regions known from peptide sequencing of the coleoptile proteins. Because a rather small gene family is indicated, the implication is that there may be less functional diversity than in animal cells. Furthermore, the sequence data clearly show that plant annexins form a very distinct group compared with those from other kingdoms.  相似文献   

10.
11.
目的用基因工程的方法在大肠埃希菌中克隆表达白细胞介素12(IL-12)的两个亚单位基因p35和p40。方法从乳腺癌患者全血中分离淋巴细胞,利用RT—PCR扩增获得了IL-12的2个亚单位基因p35和p40,分别转化到大肠埃希菌中,获得了高效表达。结果薄层扫描分析结果表明,在BL21(DE3)中表达的重组蛋白IL-12P35和IL-12P40分别占菌体裂解液中蛋白总量的39%和30%。结论该实验结果为IL-12在体外的批量生产奠定了基础。  相似文献   

12.
We have identified and sequenced a novel baculovirus gene, late expression factor eight gene (lef-8), of Autographa californica nuclear polyhedrosis virus that is necessary for efficient expression from late and very late virus gene promoters in a transient expression assay. The predicted gene product, LEF-8, has a molecular mass of 102 kDa and contains a conserved sequence motif, GXKX4HGQ/NKG, found in DNA-directed RNA polymerases throughout the animal, plant, and microbial kingdoms.  相似文献   

13.
14.
15.
This study characterized the ability of a new member of the p35 family, p49, to inhibit a number of mammalian and insect caspases. p49 blocked apoptosis triggered by treatment with Fas ligand (FasL), Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or ultraviolet (UV) radiation but provided negligible protection against apoptosis induced by the chemotherapeutic drug cisplatin. The caspase cleavage site in p49 was determined, and mutation of the P1 residue of this site abolished the ability of p49 to inhibit caspases, implying that p49 inhibits caspases through an analogous suicide-substrate mechanism to p35. Unlike p35, p49 inhibited the upstream insect caspase DRONC.  相似文献   

16.
Tian J  Zhang X  Liang B  Li S  Wu Z  Wang Q  Leng C  Dong J  Wang T 《PloS one》2010,5(12):e14218

Background

Programmed cell death plays an important role in mediating plant adaptive responses to the environment such as the invasion of pathogens. Verticillium wilt, caused by the necrotrophic pathogen Verticillium dahliae, is a serious vascular disease responsible for great economic losses to cotton, but the molecular mechanisms of verticillium disease and effective, safe methods of resistance to verticillium wilt remain unexplored.

Methodology/Principal Findings

In this study, we introduced baculovirus apoptosis inhibitor genes p35 and op-iap into the genome of cotton via Agrobacterium-mediated transformation and analyzed the response of transgenic plants to verticillium wilt. Results showed that p35 and op-iap constructs were stably integrated into the cotton genome, expressed in the transgenic lines, and inherited through the T3 generation. The transgenic lines had significantly increased tolerance to verticillium wilt throughout the developmental stages. The disease index of T1–T3 generation was lower than 19, significantly (P<0.05) better than the negative control line z99668. After treatment with 250 mg/L VD-toxins for 36 hours, DNA from negative control leaves was fragmented, whereas fragmentation in the transgenic leaf DNA did not occur. The percentage of cell death in transgenic lines increased by 7.11% after 60 mg/L VD-toxin treatment, which was less than that of the negative control lines''s 21.27%. This indicates that p35 and op-iap gene expression partially protects cells from VD-toxin induced programmed cell death (PCD).

Conclusion/Significance

Verticillium dahliae can trigger plant cells to die through induction of a PCD mechanism involved in pathogenesis. This paper provides a potential strategy for engineering broad-spectrum necrotrophic disease resistance in plants.  相似文献   

17.
18.
A plasmid containing the bacterial chloramphenicol acetyltransferase (CAT) gene under the control of an Autographa california nuclear polyhedrosis virus (AcNPV) late gene promoter was constructed. This plasmid (pL2cat) also contained the AcNPV hr5 enhancer element. Transient-expression assay experiments indicated that the late promoter was active in Spodoptera frugiperda cells cotransfected with pL2cat and AcNPV DNA but not when pL2cat was transfected alone. Low levels of CAT activity were observed in cells cotransfected with pL2cat and pIE-1 DNAs. However, CAT activity was not induced in a similar plasmid which lacked the cis-linked enhancer element, indicating that the enhancer was required for expression of the late gene. Cotransfection mapping of pPstI clones of AcNPV DNA indicated that the pPstI-G clone of viral DNA contained a factor which further stimulated late gene expression 3- to 10-fold. Transient-expression assay analysis of subclones of pPstI-G localized the trans-active factor to a 3.0-kilobase XbaI fragment. The nucleotide sequence of this fragment was determined and found to contain three potential open reading frames. A computer-assisted search of a protein database revealed no closely related proteins. One of the predicted amino acid sequences contained potential metal-binding domains similar to those found in nucleic acid-binding proteins. Subcloning and subsequent CAT assay indicated that two of the open reading frames were required for the activation of pL2cat. Nuclease S1 mapping of infected and transfected RNAs indicated that the two open reading frames were transcribed as delayed-early genes. Quantitative nuclease S1 analysis and differential DNA digestion of recovered plasmids indicated that the activation of pL2cat was not due to an increase in steady-state levels of mRNA replication of the viral DNA.  相似文献   

19.
20.
To illuminate the origins of NADPH oxidase (Nox), we identified cDNA clones encoding Nox2, Nox4, p22 phagocyte oxidase (phox), p47phox, and p67phox in a chordate phylogenetically distant to the vertebrates, the sea squirt Ciona intestinalis. We also examined the spatiotemporal expression of these genes in embryos and juveniles. The sequences of the Nox2, Nox4, p22phox, p47phox, and p67phox cDNAs contained open reading frames encoding 581, 811, 175, 461, and 515 amino acids, respectively. The level of identities between the deduced Nox2, Nox4, p22phox, p47phox, and p67phox amino acid sequences and their corresponding human components were 54.0, 31.0, 44.4, 36.0, and 26.2%, respectively. Despite these low identities, the functional domains of the C. intestinalis and human NADPH oxidase and Nox4 are highly conserved. The genomic organizations of the components of the NADPH oxidase gene except for p67phox (a single exon gene) and the Nox4 gene in C. intestinalis are highly similar to those of the corresponding human NADPH oxidase genes. Further, the analyzed part of the C. intestinalis genome and EST database do not seem to present p40phox and Nox5. The Nox2, p22phox, p47phox, and p67phox genes were specifically expressed in the blood cells of juveniles. The Nox4 gene was expressed in blood cells and endostyle of juveniles. These results suggest that C. intestinalis NADPH oxidase components possess potential functional activities similar to those of human, but the manner in which cytosolic phox proteins in C. intestinalis interact is different from that in human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号