首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ras proteins function as critical relay switches that regulate diverse signaling pathways between cell surface receptors and the nucleus. Over the past 2-3 years researchers have identified many components of these pathways that mediate Ras activation and effector function. Among these proteins are several guanine nucleotide exchange factors (GEFs), which are responsible for directly interacting with and activating Ras in response to extracellular stimuli. Analogous GEFs regulate Ras-related proteins that serve other diverse cellular functions. In particular, a growing family of proteins (Dbl homology proteins) has recently been identified, which may function as GEFs for the Rho family of Ras-related proteins. This review summarizes our current knowledge of the structure, biochemistry and biology of Ras and Rho family GEFs. Additionally, we describe mechanisms of GEF activation of Ras in signal transduction and address the potential that deregulated GEFs might contribute to malignant transformation through chronic Ras protein activation.  相似文献   

2.
Vesicular traffic during exocytosis is regulated by Rab GTPase, Sec4p in yeast, which is activated by a guanine nucleotide exchange factor (GEF) called Sec2p. The GEF activity is localized in the N-terminal 160 residues of Sec2p, which lacks sequence similarity with any other GEFs with known structures, and thereby the guanine nucleotide exchange mechanism by Sec2p remains unknown. Here, we report the crystal structure of the Sec2p GEF domain at 3.0 A resolution. The structure unexpectedly consists of a homodimeric, parallel coiled coil that extends over 180 A. Pull-down and guanine nucleotide exchange analyses on a series of deletion and point mutants of Sec2p unveiled the catalytic residues for its GEF activity as well as the Sec4p binding site, thus presenting a nucleotide exchange mechanism by a simple coiled coil. The present functional analyses allow us to build the Sec2p:Sec4p complex model, which explains the specificity for Rab GTPases by their respective GEF proteins.  相似文献   

3.
Macrophages play crucial role in tissue homeostasis and the innate and adaptive immune response. Depending on the state of activation macrophages acquire distinct phenotypes that depend on actin, which is regulated by small GTPase RhoA. The naive M0 macrophages are slightly elongated, pro-inflammatory M1 are round and M2 anti-inflammatory macrophages are elongated. We showed previously that interference with RhoA pathway (RhoA deletion or RhoA/ROCK kinase inhibition) disrupted actin, produced extremely elongated (hummingbird) macrophage phenotype and inhibited macrophage movement toward transplanted hearts. The RhoA function depends on the family of guanine-nucleotide exchange factors (GEFs), which catalyze the exchange of GDP for GTP and activate RhoA that reorganizes actin cytoskeleton. Using actin staining, immunostaining, Western blotting, flow cytometry and transmission electron microscopy we studied how a direct inhibition of Rho-GEFs with Rhosin (Rho GEF-binding domain blocker) and Y16 (Rho GEF DH-PH domain blocker) affects M0, M1 and M2 macrophage phenotypes. We also studied how Rho-GEFs inhibition and RhoA deletion affects organization of Golgi complex that is crucial for normal macrophage functions such as phagocytosis, antigen presentation and receptor recycling. We found that GEFs inhibition differently affected M0, M1 and M2 macrophages phenotype and that GEFs inhibition and RhoA deletion both caused changes in the ultrastructure of the Golgi complex. These results suggest that actin/RhoA- dependent shaping of macrophage phenotype has different requirements for activity of RhoA/GEFs pathway in M0, M1 and M2 macrophages, and that RhoA and Rho-GEFs functions are necessary for the maintenance of actin-dependent organization of Golgi complex.  相似文献   

4.
Guanine nucleotide exchange factors (GEFs) directly engage small GTPases to facilitate the exchange of bound GDP for GTP, leading to GTPase activation. Several recent crystal structures of GEFs in complex with Rho family GTPases highlight the conserved interactions and conformational alterations necessary for catalyzing exchange. In the present study, functional roles were defined for specific residues within Cdc42 implicated by the crystal structures as important for physiological exchange of guanine nucleotides within Rho GTPases. In particular, this study highlights the paramount importance of the phosphate-binding loop and interactions with the magnesium co-factor as critical for proper regulation of RhoGEF-catalyzed exchange. Other conformational alterations of the GTPases affecting interactions with the sugar and base of guanine nucleotides are also important but are secondary. Of particular note, substitution of alanine for cysteine at position 18 of Cdc42 leads to a fast cycling phenotype for Cdc42 with heightened affinity for RhoGEFs and produces a dominant negative form of Cdc42 capable of inhibiting RhoGEFs both in vitro and in vivo.  相似文献   

5.
Activation of the phagocyte NADPH oxidase is the consequence of the assembly of membranal cytochrome b559 with the cytosolic components p47phox, p67phox, and the GTPase Rac and is mimicked by a cell-free system comprising these components and an activator. We designed a variant of this system, consisting of membranes, p67phox) prenylated Rac1-GDP, and the Rac-specific guanine nucleotide exchange factor (GEF) Trio, in which oxidase activation is induced in the absence of an activator and p47phox. We now show that: 1) Trio and another Rac GEF (Tiam1) act by inducing GDP to GTP exchange on prenylated Rac1-GDP and that our earlier assertion that activation is GTP-independent is explained by contamination of p67phox preparations with GTP and/or ATP. 2) Oxidase activation by Rac GEFs is supported not only by GTP but also by ATP. 3) Non-hydrolysable GTP analogs are active, whereas ATP analogs, incapable of gamma-phosphoryl transfer, are inactive. 4) The ability of ATP to support GEF-induced oxidase activation is explained by ATP serving as a gamma-phosphoryl donor for a membrane-localized nucleoside diphosphate kinase (NDPK), converting GDP to GTP. 5) The existence of a NDPK in macrophage membranes is proven by functional, enzymatic, and immunologic criteria. 6) NDPK acts on free GDP, and the newly formed GTP is bound again to Rac. 7) Free GDP is derived exclusively by dissociation from prenylated Rac1-GDP, mediated by GEF. NDPK and GEF appear to be functionally linked in the sense that the availability of GDP, serving as substrate for NDPK, is dependent on the level of activity of GEF.  相似文献   

6.
Dbl family guanine nucleotide exchange factors   总被引:27,自引:0,他引:27  
The Dbl family of guanine nucleotide exchange factors are multifunctional molecules that transduce diverse intracellular signals leading to the activation of Rho GTPases. The tandem Dbl-homology and pleckstrin-homology domains shared by all members of this family represent the structural module responsible for catalyzing the GDP–GTP exchange reaction of Rho proteins. Recent progress in genomic, genetic, structural and biochemical studies has implicated Dbl family members in diverse biological processes, including growth and development, skeletal muscle formation, neuronal axon guidance and tissue organization. The detailed pictures of their autoregulation, agonist-controlled activation and mechanism of interaction with Rho GTPase substrates, have begun to emerge.  相似文献   

7.
Cyclic nucleotides (cAMP and cGMP) regulate multiple intracellular processes and are thus of a great general interest for molecular and structural biologists. To study the allosteric mechanism of different cyclic nucleotide binding (CNB) domains, we compared cAMP-bound and cAMP-free structures (PKA, Epac, and two ionic channels) using a new bioinformatics method: local spatial pattern alignment. Our analysis highlights four major conserved structural motifs: 1) the phosphate binding cassette (PBC), which binds the cAMP ribose-phosphate, 2) the “hinge,” a flexible helix, which contacts the PBC, 3) the β2,3 loop, which provides precise positioning of an invariant arginine from the PBC, and 4) a conserved structural element consisting of an N-terminal helix, an eight residue loop and the A-helix (N3A-motif). The PBC and the hinge were included in the previously reported allosteric model, whereas the definition of the β2,3 loop and the N3A-motif as conserved elements is novel. The N3A-motif is found in all cis-regulated CNB domains, and we present a model for an allosteric mechanism in these domains. Catabolite gene activator protein (CAP) represents a trans-regulated CNB domain family: it does not contain the N3A-motif, and its long range allosteric interactions are substantially different from the cis-regulated CNB domains.  相似文献   

8.
Shutes A  Phillips RA  Corrie JE  Webb MR 《Biochemistry》2002,41(11):3828-3835
Novel guanine nucleotide analogues have been used to investigate the role of Mg(2+) in nucleotide release and binding with the small G protein rac. The fluorescent analogues have 7-(ethylamino)-8-bromocoumarin-3-carboxylic acid attached to the 3'-position of the ribose via an ethylenediamine linker. This modification has only small effects on the interaction with rac. There are large fluorescence changes on binding of the triphosphate to rac, on hydrolysis, and then on release of the diphosphate. Furthermore, the fluorescence is sensitive to the presence of Mg(2+) in the active site. Using this signal, it was shown that, for a variety of conditions, the nucleotides dissociate by a two-step mechanism. Mg(2+) is released first followed by the nucleotide. With the diphosphate, Mg(2+) is fast and nucleotide release slow. For the fluorescent GMPPNP analogue, the rate of dissociation is limited by Mg(2+) release. In the latter case, Mg(2+) binds tightly with a K(d) of 61 nM, whereas for the diphosphate the K(d) is 11 microM (30 degrees C, pH 7.6).  相似文献   

9.
10.
RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through -4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological- cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanisms for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors.  相似文献   

11.
Using the stopped-flow kinetic method we have measured the deuteration rate of the amino protons in 2'deoxyguanosine 5'monophosphate and 7-methylguanosine 5'monophosphate. For both compounds the exchange rates are accelerated with increasing concentration of a large number of buffers with widely differing pKs. The results obtained, in conjunction with a theoretical model study, give rise to serious doubts concerning the normally accepted mechanism of amino proton exchange involving a pre-protonation at N7.  相似文献   

12.
The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects.  相似文献   

13.
Mycobacterium tuberculosis (M.tb), which causes tuberculosis, is a host-adapted intracellular pathogen that can live within macrophages owning to its ability to arrest phagolysosome biogenesis. The guanine nucleotide exchange factor H1 (GEF-H1) may contribute to the phagocytosis of bacteria by macrophages through mediating the crosstalk between microtubules and the actin cytoskeleton. Its role in Shigella infection has been determined but little is known about the role of GEF-H1 in mycobacterial infection. In the present study, we demonstrated that GEF-H1 functioned as a key regulator of the macrophage-mediated anti-mycobacterial response. We found that both mRNA and protein expression levels of GEF-H1 were significantly upregulated in macrophage during mycobacterial infection. Moreover, silencing of GEF-H1 with specific siRNAs reduced the phosphorylation of p38 mitogen-activated protein kinase and TANK binding kinase 1 as well as the expression of interleukin-1β (IL-1β), IL-6, and interferon-β (IFN-β), without affecting nitric oxide production or autophagy. Importantly, GEF-H1 depletion attenuated macrophages-mediated mycobacterial phagocytosis and elimination. Taken together, our data supported that GEF-H1 was a novel regulator of inflammatory cytokine production and mycobacterial elimination, and may serve as a novel potential target for clinical treatment of tuberculosis.  相似文献   

14.
Rho GTPases are activated by a family of guanine nucleotide exchange factors (GEFs) known as Dbl family proteins. The structural basis for how GEFs recognize and activate Rho GTPases is presently ill defined. Here, we utilized the crystal structure of the DH/PH domains of the Rac-specific GEF Tiam1 in complex with Rac1 to determine the structural elements of Rac1 that regulate the specificity of this interaction. We show that residues in the Rac1 beta2-beta3 region are critical for Tiam1 recognition. Additionally, we determined that a single Rac1-to-Cdc42 mutation (W56F) was sufficient to abolish Rac1 sensitivity to Tiam1 and allow recognition by the Cdc42-specific DH/PH domains of Intersectin while not impairing Rac1 downstream activities. Our findings identified unique GEF specificity determinants in Rac1 and provide important insights into the mechanism of DH/PH selection of GTPase targets.  相似文献   

15.
RasGrf1 and RasGrf2 are highly homologous mammalian guanine nucleotide exchange factors which are able to activate specific Ras or Rho GTPases. The RasGrf genes are preferentially expressed in the central nervous system, although specific expression of either locus may also occur elsewhere. RasGrf1 is a paternally-expressed, imprinted gene that is expressed only after birth. In contrast, RasGrf2 is not imprinted and shows a wider expression pattern. A variety of isoforms for both genes are also detectable in different cellular contexts. The RasGrf proteins exhibit modular structures composed by multiple domains including CDC25H and DHPH motifs responsible for promoting GDP/GTP exchange, respectively, on Ras or Rho GTPase targets. The various domains are essential to define their intrinsic exchanger activity and to modulate the specificity of their functional activity so as to connect different upstream signals to various downstream targets and cellular responses. Despite their homology, RasGrf1 and RasGrf2 display differing target specificities and non overlapping functional roles in a variety of signaling contexts related to cell growth and differentiation as well as neuronal excitability and response or synaptic plasticity. Whereas both RasGrfs are activatable by glutamate receptors, G-protein-coupled receptors or changes in intracellular calcium concentration, only RasGrf1 is reported to be activated by LPA, cAMP, or agonist-activated Trk and cannabinoid receptors. Analysis of various knockout mice strains has uncovered a specific functional contribution of RasGrf1 in processes of memory and learning, photoreception, control of post-natal growth and body size and pancreatic β-cell function and glucose homeostasis. For RasGrf2, specific roles in lymphocyte proliferation, T-cell signaling responses and lymphomagenesis have been described.  相似文献   

16.
A B Fawzi  J K Northup 《Biochemistry》1990,29(15):3804-3812
Transducin (Gt) is a member of a family of receptor-coupled signal-transducing guanine nucleotide (GN) binding proteins (G-proteins). Light-activated rhodopsin is known to catalyze GN exchange on Gt, resulting in the formation of the active state of the Gt alpha-GTP complex. However, purified preparations of Gt have been shown to exchange GN in the absence of activated receptors [Wessling-Resnick, M., & Johnson, G. L. (1987) Biochemistry 26, 4316-4323]. To evaluate the role of rhodopsin in the activation of Gt, we studied GN-binding characteristics of different preparations of Gt. Gt preparations obtained rom the supernate of GTP-treated bovine rod outer segment (ROS) disks, followed by removal of free GTP on a Sephadex G-25 column, bound GTP gamma S at 30 degrees C in the absence of added exogenous rhodopsin with an activity of 1 mol of GTP gamma S bound/mol of Gt (Gt-I preparations). Binding of GTP gamma S to Gt-I preparations closely correlated with the activation of ROS disk cGMP phosphodiesterase. GN-binding activity of Gt-I preparations was dependent on reaction temperature, and no binding was observed at 4 degrees C. In the presence of 10 microM bleached rhodopsin, Gt-I preparations bound GTP gamma S at 4 degrees C. However, hexylagarose chromatography of Gt-I preparations led to a preparation of Gt that showed less than 0.1 mol/mol binding activity following 60-min incubation at 30 degrees C in the absence of rhodopsin (Gt-II preparations).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The mechanism of receptor-induced activation of adenylate cyclase has been proposed to involve an enhanced exchange of GDP for GTP. The kinetics of this process have not been investigated so far in the brain due to a spontaneous activation of the enzyme by guanyl nucleotides, which precludes the ability to follow receptor-dependent events. We show that it is possible to investigate the mechanism of receptor action in such systems by using a combination of guanosine 5'-(beta-gamma-imino)triphosphate (Gpp(NH)p) and guanosine 5'-(2-O-thio)diphosphate (GDP beta S). In pineal membranes, beta-adrenergic agonists increase the rate of adenylate cyclase activation by 10 or 100 microM Gpp(NH)p about 40-fold (0.023-0.9 min-1 kact) and decrease the inhibitory potency of GDP beta S nearly 1000-fold. As a result, 100 microM GDP beta S which blocks 90% of the activation by 10 microM Gpp(NH)p has no inhibitory effect in the presence of 10 microM Gpp(NH)p and 10 microM noradrenaline or isoproterenol. In caudate nucleus, dopamine does not appear to increase the rate of activation of adenylate cyclase by 10 microM Gpp(NH)p. Nevertheless, 100 microM GDP beta S blocks 90% of the activation by 10 microM Gpp(NH)p but has no inhibitory effects in the presence of dopamine. Thus, one can demonstrate that even weakly activating receptors have the capacity to facilitate a functional exchange of GDP beta S for Gpp(NH)p and measure the efficacy of the interaction between the receptor and the functionally linked guanyl nucleotide subunit.  相似文献   

18.
As an approach to defining the role of p53 in cellular proliferation, murine cell lines were derived which contain a stably transfected temperature-inducible p53 expression system. Cell lines derived with the system exhibited a 3-6-fold physiologic elevation in the cellular p53 concentration when grown at 32.5 degrees C. A p53 induction phenotype was defined by examination of the growth properties of these lines at 32.5 degrees C. The induction phenotype had three main features: 1) a 2-4-fold increase in doubling time and biphasic growth kinetics; 2) delayed early S phase transit; and 3) complete reversibility either by growth at 37 degrees C or by growth in the presence of added hypoxanthine or xanthosine. The reversal of the induction phenotype by these purine salvage precursors implicated the purine nucleotide biosynthetic pathway as the cellular target for the antiproliferative action of p53. Subsequent genetic and biochemical analyses identified a p53 induction-related purine pathway defect which was localized to the step of inosine 5'-monophosphate conversion to xanthosine 5'-monophosphate. This enzymatic step catalyzed by inosine 5'-monophosphate dehydrogenase (EC 1.2.1.14) is the rate-limiting step for GTP synthesis. Extracts from p53-inducible cells growing at the induction temperature show a specific reduction in inosine 5'-monophosphate dehydrogenase enzymatic activity. These findings define p53 as a cellular regulator of the synthesis of GTP, a key regulatory nucleotide for many important cellular processes. Moreover, observations of the growth behavior of p53-inducible cells suggest that by regulating the production of GTP, p53 can control cellular quiescence.  相似文献   

19.
Inprevious work (McKee EE, Bentley AT, Smith RM Jr, and Ciaccio CE,Biochem Biophys Res Commun 257: 466-472, 1999), the transport of guanine nucleotides into the matrix of intact isolated heart mitochondria was demonstrated. In this study, the time course andmechanisms of guanine nucleotide transport are characterized. Twodistinct mechanisms of transport were found to be capable of movingguanine nucleotides across the inner membrane. The first carrier wassaturable, displayed temperature dependence, preferred GDP to GTP, anddid not transport GMP or IMP. When incubated in the absence ofexogenous ATP, this carrier had a Vmax of946 ± 53 pmol · mg1 · min1 with aKm of 2.9 ± 0.3 mM for GDP. However,transport of GTP and GDP on this carrier was completely inhibited byphysiological concentrations of ATP, suggesting that this carrier wasnot involved with guanine nucleotide transport in vivo. Becausetransport on this carrier was also inhibited by atractyloside, thiscarrier was consistent with the well-characterized ATP/ADP translocase. The second mechanism of guanine nucleotide uptake was insensitive toatractyloside, displayed temperature dependence, and was capable oftransporting GMP, GDP, and GTP at approximately equal rates but did nottransport IMP, guanine, or guanosine. GTP transport via this mechanismwas slow, with a Vmax of 48.7 ± 1.4 pmol · mg1 · min1 and aKm = 4.4 ± 0.4 mM. However, becausethe requirement for guanine nucleotide transport is low in nondividingtissues such as the heart, this transport process is neverthelesssufficient to account for the matrix uptake of guanine nucleotides andmay represent the physiological mechanism of transport.

  相似文献   

20.
Most G-proteins require a guanine nucleotide exchange factor (GEF) to regulate a variety of critical cellular processes. Interestingly, a small number of G-proteins switch between the active and inactive forms without a GEF. Translation elongation factor 1A (eEF1A) normally requires the GEF eEF1Balpha to accelerate nucleotide dissociation. However, several mutant forms of eEF1A are functional independent of this essential regulator in vivo. GEF-independent eEF1A mutations localize close to the G-protein motifs that are crucial for nucleotide binding. Kinetic analysis demonstrated that reduced GDP affinity correlates with wild type growth and high translation activities of GEF-independent mutants. Furthermore, the mutant forms show an 11-22-fold increase in rates of GDP dissociation from eEF1A compared with the wild type protein. All mutant forms have dramatically enhanced stability at elevated temperatures. This, coupled with data demonstrating that eEF1A is also more stable in the presence of nucleotides, suggests that both the GEF and nucleotide have stabilizing effects on eEF1A. The biochemical properties of these eEF1A mutants provide insight into the mechanism behind GEF-independent G-protein function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号