首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cardiac neural crest cells (CNCCs) have played an important role in the evolution and development of the vertebrate cardiovascular system: from reinforcement of the developing aortic arch arteries early in vertebrate evolution, to later orchestration of aortic arch artery remodeling into the great arteries of the heart, and finally outflow tract septation in amniotes. A critical element necessary for the evolutionary advent of outflow tract septation was the co‐evolution of the cardiac neural crest cells with the second heart field. This review highlights the major transitions in vertebrate circulatory evolution, explores the evolutionary developmental origins of the CNCCs from the third stream cranial neural crest, and explores candidate signaling pathways in CNCC and outflow tract evolution drawn from our knowledge of DiGeorge Syndrome. Birth Defects Research (Part C) 102:309–323, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
3.
Nie X  Deng CX  Wang Q  Jiao K 《Developmental biology》2008,316(2):417-430
TGFβ/BMP signaling pathways are essential for normal development of neural crest cells (NCCs). Smad4 encodes the only common Smad protein in mammals, which is a critical nuclear mediator of TGFβ/BMP signaling. In this work, we sought to investigate the roles of Smad4 for development of NCCs. To overcome the early embryonic lethality of Smad4 null mice, we specifically disrupted Smad4 in NCCs using a Cre/loxP system. The mutant mice died at mid-gestation with defects in facial primordia, pharyngeal arches, outflow tract and cardiac ventricles. Further examination revealed that mutant embryos displayed severe molecular defects starting from E9.5. Expression of multiple genes, including Msx1, 2, Ap-2α, Pax3, and Sox9, which play critical roles for NCC development, was downregulated by NCC disruption of Smad4. Moreover, increased cell death was observed in pharyngeal arches from E10.5. However, the cell proliferation rate in these areas was not substantially altered. Taken together, these findings provide compelling genetic evidence that Smad4-mediated activities of TGFβ/BMP signals are essential for appropriate NCC development.  相似文献   

4.
Neurofibromatosis type 1 (NF1) is a common human genetic disease involving various neural crest (NC)-derived cell types, in particular, Schwann cells and melanocytes. The gene responsible for NF1 encodes the protein neurofibromin, which contains a domain with amino acid sequence homology to the ras-guanosine triphosphatase activating protein, suggesting that neurofibromin may play a role in intracellular signaling pathways regulating cellular proliferation or differentiation, or both. To determine whether neurofibromin plays a role in NC cell development, we used antibodies raised against human neurofibromin fusion proteins in western blot and immunocytochemical studies of early avian embryos. These antibodies specifically recognized the 235 kD chicken neurofibromin protein, which was expressed in migrating trunk and cranial NC cells of early embryos (E1.5 to E2), as well as in endothelial and smooth muscle cells of blood vessels and in a subpopulation of non-NC-derived cells in the dermamyotome. At slightly later stages (E3 to E5), neurofibromin immunostaining was observed in various NC derivatives, including dorsal root ganglia and peripheral nerves, as well as non-NC-derived cell types, including heart, skeletal muscle, and kidney. At still later stages (E7 to E9), neurofibromin immunoreactivity was found in almost all tissues in vivo. To determine whether the levels of neurofibromin changed during melanocyte and Schwann cell development, tissue culture experiments were performed. Cultured NC cells were found to express neurofibromin at early time points in culture, but the levels of immunoreactivity decreased as the cells underwent pigmentation. Schwann cells, on the other hand, continued to express neurofibromin in culture. These data suggest, therefore, that neurofibromin may play a role in the development of both NC cells and a variety of non-NC-derived tissues. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
The development and distribution of the cranial neural crest in the rat embryo   总被引:10,自引:0,他引:10  
Summary The head region of rat embryos was investigated by scanning electron microscopy after removal of the surface ectoderm with adhesive tape. Observations were made in embryos from 6-somite to 11-somite stages of development, in order to determine: (1) the sequence of emigration of neural crest cells from the different regions of the future brain; (2) the appearance of crest cells before, during, and after their conversion from an epithelial to a mesenchymal form; (3) the migration pathways.Emigration occurs first from the midbrain, and next from the rostral hindbrain; crest cells from these two regions migrate into the first visceral arch. Subsequently cells emigrate from the caudal hindbrain, but not in a rostrocaudal sequence. At the time of crest cell emigration, the neural fold morphology varies from a slightly convex, widely open plate (midbrain) to a closed tube (caudal hindbrain). Thus the timing of emigration is related neither to age (as reflected in rostrocaudal levels) nor to morphology of the neural epithelium.  相似文献   

6.
Id proteins are negative regulators of basic helix-loop-helix gene products and participate in many developmental processes. We have evaluated the expression of Id2 in the developing chick heart and found expression in the cardiac neural crest, secondary heart field, outflow tract, inflow tract, and anterior parasympathetic plexus. Cardiac neural crest ablation in the chick embryo, which causes structural defects of the cardiac outflow tract, results in a significant loss of Id2 expression in the outflow tract. Id2 is also expressed in Xenopus neural folds, branchial arches, cardiac outflow tract, inflow tract, and splanchnic mesoderm. Ablation of the premigratory neural crest in Xenopus embryos results in abnormal formation of the heart and a loss of Id2 expression in the heart and splanchnic mesoderm. This data suggests that the presence of neural crest is required for normal Id2 expression in both chick and Xenopus heart development and provides evidence that neural crest is involved in heart development in Xenopus embryos.  相似文献   

7.
Summary The cardiac neural crest provides both ectomesenchyme and parasympathetic postganglionic neurons to the developing heart. Ablation of cardiac neural crest results in persistent truncus arteriosus, a condition in which the conotruncal and aorticopulmonary septa do not form in the developing heart. Parasympathetic postganglionic neurons are abundantly present in hearts with persistent truncus arteriosus, which indicates a regeneration of the neural component of the cardiac neural crest without comparable restitution of the ectomesenchymal component. The neural component has been shown to be provided by cells from the nodose placode following ablation of the cardiac neural crest. This investigation has shown that ectomesenchymal cells are also supplied to a limited extent by the nodose placode which normally has no ectomesenchymal derivatives. Although placode-derived ectomesenchyme helps to strengthen the wall of the cardiac outflow vessel, it is not competent to induce conotruncal and aorticopulmonary septal closure.  相似文献   

8.
9.
In the avian hindbrain, premigratory neural crest cells undergo programmed cell death (apoptosis) in rhombomeres 3 and 5 (r3, r5). Here, we have attempted to analyze the significance of the loss of neural crest cells from these odd-numbered rhombomeres. When apoptosis is prevented in r3 and r5, r3 crest migrate into the first arch and r5 into the third arch. Interestingly, these extra neural crest cells contributed to the formation of ectopic muscle attachment sites that are also found in those species in which r3 and r5 neural crest cells do not undergo apoptosis. Thus, apoptosis in the odd-numbered rhombomeres appears to be an evolutionarily derived mechanism that is required to eliminate r3 and r5 crest migration into first and third arches and thereby remove these muscle attachment sites.  相似文献   

10.
In the early part of the 20th century, J. P. Hill and K. P. Watson embarked on a comprehensive study of the development of the brain in Australian marsupials. Their work included series from three major groups: dasyurids, peramelids, and diprotodonts, covering early primitive streak through brain closure and folding stages. While the major part of the work was on the development of the brain, in the course of this work they documented that cellular proliferations from the neural plate provided much of the mesenchyme of the branchial arches. These proliferations are now known to be the neural crest. However, except for a very brief note, published shortly after Hill's death, this work was never published. In this study, I present Hill and Watson's work on the development of the early neural plate and the neural crest in marsupials. I compare their findings with published work on the South American marsupial, Monodelphis domestica and demonstrate that patterns reported in Monodelphis are general for marsupials. Further, using their data I demonstrate that in dasyurids, which are ultra-altricial at birth, the neural crest migrates early and in massive quantities, even relative to other marsupials. Finally, I discuss the historical context and speculate on reasons for why this work was unpublished. I find little support for ideas that Hill blocked publication because of loyalty to the germ layer theory. Instead, it appears primarily to have been a very large project that was simply orphaned as Watson and Hill pursued other activities.  相似文献   

11.
The neural crest (NC), an ectoderm-derived structure of the vertebrate embryo, gives rise to the melanocytes, most of the peripheral nervous system and the craniofacial mesenchymal tissues (i.e., connective, bone, cartilage and fat cells). In the trunk of Amniotes, no mesenchymal tissues are derived from the NC. In certain in vitro conditions however, avian and murine trunk NC cells (TNCCs) displayed a limited mesenchymal differentiation capacity. Whether this capacity originates from committed precursors or from multipotent TNCCs was unknown. Here, we further investigated the potential of TNCCs to develop into mesenchymal cell types in vitro. We found that, in fact, quail TNCCs exhibit a high ability to differentiate into myofibroblasts, chondrocytes, lipid-laden adipocytes and mineralizing osteoblasts. In single cell cultures, both mesenchymal and neural cell types coexisted in TNCC clonal progeny: 78% of single cells yielded osteoblasts together with glial cells and neurons; moreover, TNCCs generated heterogenous clones with adipocytes, myofibroblasts, melanocytes and/or glial cells. Therefore, alike cephalic NCCs, early migratory TNCCs comprised multipotent progenitors able to generate both mesenchymal and melanocytic/neural derivatives, suggesting a continuum in NC developmental potentials along the neural axis. The skeletogenic capacity of the TNC, which was present in the exoskeletal armor of the extinct basal forms of Vertebrates and which persisted in the distal fin rays of extant teleost fish, thus did not totally disappear during vertebrate evolution. Mesenchymal potentials of the TNC, although not fulfilled during development, are still present in a dormant state in Amniotes and can be disclosed in in vitro culture. Whether these potentials are not expressed in vivo due to the presence of inhibitory cues or to the lack of permissive factors in the trunk environment remains to be understood.  相似文献   

12.
Stem cells are often transplanted with scaffolds for tissue regeneration; however, how the mechanical property of a scaffold modulates stem cell fate in vivo is not well understood. Here we investigated how matrix stiffness modulates stem cell differentiation in a model of vascular graft transplantation. Multipotent neural crest stem cells (NCSCs) were differentiated from induced pluripotent stem cells, embedded in the hydrogel on the outer surface of nanofibrous polymer grafts, and implanted into rat carotid arteries by anastomosis. After 3 months, NCSCs differentiated into smooth muscle cells (SMCs) near the outer surface of the polymer grafts; in contrast, NCSCs differentiated into glial cells in the most part of the hydrogel. Atomic force microscopy demonstrated a stiffer matrix near the polymer surface but much lower stiffness away from the polymer graft. Consistently, in vitro studies confirmed that stiff surface induced SMC genes whereas soft surface induced glial genes. These results suggest that the scaffold’s mechanical properties play an important role in directing stem cell differentiation in vivo, which has important implications in biomaterials design for stem cell delivery and tissue engineering.  相似文献   

13.
14.
目的 探讨Smad2/3a对脊椎动物神经嵴细胞发育的影响。方法 通过在斑马鱼胚胎单细胞时期显微注射smad2/3吗啉环修饰的反义寡核苷酸的方法,特异性敲降smad2/3基因的表达,至胚胎发育至6体节,利用整胚原位杂交检测神经嵴细胞特异性标记基因snail1b,sox10,foxd3和crestin的表达情况;通过casmad2 mRNA和smad3a mRNA显微注射的方法过表达smad2和smad3a,同样利用整胚原位杂交检测神经嵴细胞特异性标记基因crestin的表达情况;通过过表达casmad2及smad3a对下调smad2和smad3a的胚胎进行挽救。结果 smad2/3a被敲低后,crestin的表达量显著降低,而snail1b,sox10和foxd3的表达量无明显变化。smad3b被敲低后,crestin,snail1b,sox10和foxd3的表达量均无明显变化;过表达casmad2和smad3a均可导致crestin的表达量增高;过表达casmad2和smad3a可挽救由于smad2/3a敲降所造成crestin的低表达量。结论 Smad2和Smad3a对神经嵴细胞标记基因crestin的表达具有重要作用。  相似文献   

15.
16.
In cardiac neural-crest-ablated embryos, the secondary heart field fails to add myocardial cells to the outflow tract and elongation of the tube is deficient. Since that study, we have shown that the secondary heart field provides both myocardium and smooth muscle to the arterial pole. The present study was undertaken to determine whether addition of both cell types is disrupted after neural crest ablation. Marking experiments confirm that the myocardial component fails to be added to the outflow tract after neural crest ablation. The cells destined to go into the outflow myocardium fail to migrate and are left at the junction of the outflow myocardium with the nascent smooth muscle at the base of the arterial pole. In contrast, the vascular smooth muscle component is added to the arterial pole normally after neural crest ablation. When the myocardium is not added to the outflow tract, the point where the outflow joins the pharynx does not move caudally as it normally should, the aortic sac is smaller and fails to elongate resulting in abnormal connections of the outflow tract with the caudal aortic arch arteries.  相似文献   

17.
In cranial skeletal development, the establishment of the ectomesenchymal lineage within the cranial neural crest is of great significance. Fgfs are polypeptide growth factors with diverse functions in development and metabolism. Fgf20b knockdown zebrafish embryos showed dysplastic neurocranial and pharyngeal cartilages. Ectomesenchymal cells from cranial neural crest cells were significantly decreased in Fgf20b knockdown embryos, but cranial neural crest cells with a non-ectomesnchymal fate were increased. However, the proliferation and apoptosis of cranial neural crest cells were essentially unchanged. Fgfr1 knockdown embryos also showed dysplastic neurocranial and pharyngeal cartilages. The present findings indicate that Fgf20b is required for ectomesenchymal fate establishment via the activation of Fgfr1 in zebrafish.  相似文献   

18.
19.
A partial zebrafish tenascin-C cDNA clone was isolated from an embryonic zebrafish cDNA library on the basis of homology to mouse tenascin-C. The expression pattern in the head of embryonic zebrafish was analyzed by in situ hybridization. Tenascin-C mRNA was detected in neural crest cells during the period of their migration and differentiation. Expression also occurred in differentiating placodal tissues and in mesodermal cells. In the developing brain, tenascin-C mRNA was expressed in specific domains. In the hindbrain the pattern of the domains was dynamic. At 18 to 22 h postfertilization, expression was widespread in rhombomeres 3, 5, and 6, confined to periventricular cells in rhombomere 2, and not detectable in rhombomere 4. At 32 h postfertilization, tenascin-C was expressed at the rhombomere boundaries. In contrast to the hindbrain, the pattern in the forebrain and midbrain did not show any major changes between 22 and 32 h postfertilization. Domains expressing tenascin-C alternated with regions devoid of it. The most anterior domain of expression was observed at the telencephalic-diencephalic border, surrounding the optic recess. A second domain, at the border between the diencephalon and the midbrain, and a third domain, in the caudal midbrain tegmentum, appeared restricted to the basal plate. Additionally, expression of tenascin-C mRNA was detected in the hypothalamus and in the developing epiphysis. These expression patterns suggest that tenascin-C may play a role in neural crest cell migration and during the differentiation of neural crest, placodal, and mesodermal derivatives. In the developing brain, tenascin-C may be involved in the consolidation of different regional identities. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The morphogenesis of the vertebrate skull results from highly dynamic integrated processes involving the exchange of signals between the ectoderm, the endoderm, and cephalic neural crest cells (CNCCs). Before migration CNCCs are not committed to form any specific skull element, molecular signals exchanged in restricted regions of tissue interaction are crucial in providing positional identity to the CNCCs mesenchyme and activate the specific morphogenetic process of different skeletal components of the head. In particular, the endothelin‐1 (Edn1)‐dependent activation of Dlx5 and Dlx6 in CNCCs that colonize the first pharyngeal arch (PA1) is necessary and sufficient to specify maxillo‐mandibular identity. Here, to better analyze the spatio‐temporal dynamics of this process, we associate quantitative gene expression analysis with detailed examination of skeletal phenotypes resulting from combined allelic reduction of Edn1, Dlx5, and Dlx6. We show that Edn1‐dependent and ‐independent regulatory pathways act at different developmental times in distinct regions of PA1. The Edn1→Dlx5/6→Hand2 pathway is already active at E9.5 during early stages of CNCCs colonization. At later stages (E10.5) the scenario is more complex: we propose a model in which PA1 is subdivided into four adjacent territories in which distinct regulations are taking place. This new developmental model may provide a conceptual framework to interpret the craniofacial malformations present in several mouse mutants and in human first arch syndromes. More in general, our findings emphasize the importance of quantitative gene expression in the fine control of morphogenetic events. genesis 48:362–373, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号