首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference-inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem.  相似文献   

3.
Lignin, a complex phenylpropanoid compound, is polymerized from the monolignols p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. These three monolignols differ only by the 3- and 5-methoxyl groups. Therefore, enzymatic reactions controlling the methylations of the 3- and 5-hydroxyls of monolignol precursors are critical to determine the lignin composition. Recent biochemical and transgenic studies have indicated that the methylation pathways in monolignol biosynthesis are much more complicated than we have previously envisioned. It has been demonstrated that caffeoyl CoA O-methyltransferase plays an essential role in the synthesis of guaiacyl lignin units as well as in the supply of substrates for the synthesis of syringyl lignin units. Caffeic acid O-methyltransferase has been found to essentially control the biosynthesis of syringyl lignin units. These new findings have greatly enriched our knowledge on the methylation pathways in monolignol biosynthesis.  相似文献   

4.
木质素生物合成及其基因工程研究进展   总被引:29,自引:0,他引:29  
木质素是维管植物的一种主要组成成分,是植物适应陆地环境的重要特征之一.然而,它的存在严重影响植物材料在造纸工业与畜牧业生产中的应用,因此其生物合成调控的研究引起人们极大关注.随着各种分析技术和手段的提高,该领域研究取得了突破性的进展.该文重点阐述这些新进展,同时较系统地介绍利用基因工程技术调控木质素生物合成的研究成果,并提出一些关于更有效地利用生物技术手段改良造纸资源植物品质的建议.  相似文献   

5.
R A Dixon  F Chen  D Guo  K Parvathi 《Phytochemistry》2001,57(7):1069-1084
Lignin is a complex polymer formed by the oxidative polymerization of hydroxycinnamyl alcohol derivatives termed monolignols. The major monolignols in dicotyledonous angiosperm lignin are monomethylated guaiacyl (G) units derived from coniferyl alcohol, and dimethylated syringyl (S) units derived from sinapyl alcohol. The biochemical pathways leading to the formation of monolignols feature successive hydroxylation and O-methylation of the aromatic ring and conversion of the side chain carboxyl to an alcohol function. The current view of the monolignol biosynthetic pathway envisages a metabolic grid leading to G and S units, through which the successive hydroxylation and O-methylation reactions may occur at different levels of side chain oxidation. The present article assesses biochemical and genetic evidence for and against such a model, including recent data on the methylation reactions of monolignol biosynthesis in alfalfa. We draw attention to portions of the currently accepted monolignol pathway that may require revision, and suggest an alternative model in which metabolic channeling allows for independent pathways to G and S lignin.  相似文献   

6.
7.
Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) has been thought to mediate the reduction of both coniferaldehyde and sinapaldehyde into guaiacyl and syringyl monolignols in angiosperms. Here, we report the isolation of a novel aspen gene (PtSAD) encoding sinapyl alcohol dehydrogenase (SAD), which is phylogenetically distinct from aspen CAD (PtCAD). Liquid chromatography-mass spectrometry-based enzyme functional analysis and substrate level-controlled enzyme kinetics consistently demonstrated that PtSAD is sinapaldehyde specific and that PtCAD is coniferaldehyde specific. The enzymatic efficiency of PtSAD for sinapaldehyde was approximately 60 times greater than that of PtCAD. These data suggest that in addition to CAD, discrete SAD function is essential to the biosynthesis of syringyl monolignol in angiosperms. In aspen stem primary tissues, PtCAD was immunolocalized exclusively to xylem elements in which only guaiacyl lignin was deposited, whereas PtSAD was abundant in syringyl lignin-enriched phloem fiber cells. In the developing secondary stem xylem, PtCAD was most conspicuous in guaiacyl lignin-enriched vessels, but PtSAD was nearly absent from these elements and was conspicuous in fiber cells. In the context of additional protein immunolocalization and lignin histochemistry, these results suggest that the distinct CAD and SAD functions are linked spatiotemporally to the differential biosynthesis of guaiacyl and syringyl lignins in different cell types. SAD is required for the biosynthesis of syringyl lignin in angiosperms.  相似文献   

8.
Lignin is the defining constituent of wood and the second most abundant natural polymer on earth. Lignin is produced by the oxidative coupling of three monolignols: p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. Monolignols are synthesized via the phenylpropanoid pathway and eventually polymerized in the cell wall by peroxidases and laccases. However, the mechanism whereby monolignols are transported from the cytosol to the cell wall has remained elusive. Here we report the discovery that AtABCG29, an ATP-binding cassette transporter, acts as a p-coumaryl alcohol transporter. Expression of AtABCG29 promoter-driven reporter genes and a Citrine-AtABCG29 fusion construct revealed that AtABCG29 is targeted to the plasma membrane of the root endodermis and vascular tissue. Moreover, yeasts expressing AtABCG29 exhibited an increased tolerance to p-coumaryl alcohol by excreting this monolignol. Vesicles isolated from yeasts expressing AtABCG29 exhibited a p-coumaryl alcohol transport activity. Loss-of-function Arabidopsis mutants contained less lignin subunits and were more sensitive to p-coumaryl alcohol. Changes in secondary metabolite profiles in abcg29 underline the importance of regulating p-coumaryl alcohol levels in the cytosol. This is the first identification of a monolignol transporter, closing a crucial gap in our understanding of lignin biosynthesis, which could open new directions for lignin engineering.  相似文献   

9.
Suspension cell cultures (SCCs) from one of the oldest seed plants, Ginkgo biloba , show unpredictable alterations in the nature of the lignins, such as is the recruitment of sinapyl alcohol for lignin biosynthesis, compared with the woody tissues of the same species, which lack syringyl (S) lignins. These results show that, in this gymnosperm, the genes involved in sinapyl alcohol biosynthesis are latent and that their regulatory regions respond, by initiating gene expression, to the developmental signals and the environmental clues, which condition its in vitro culture. G. biloba SCCs not only synthesize S lignins but also their extracellular proteome contains both class III peroxidases capable of oxidizing sinapyl alcohol and enzymes involved in H2O2 production, observation which suggests that the peroxidase branch for the oxidative coupling of sinapyl alcohol units into lignins is operative. The incomplete knowledge of the G. biloba peroxidase-encoding genes led us to purify, characterize and partially sequence the peroxidase responsible for monolignol oxidation. When the major peroxidase from G. biloba SCCs (GbPrx) was purified to homogeneity, it showed absorption maxima in the visible region at 414 (Soret band), and at 543 and 570 nm, which calls to mind those shown by low-spin ferric peroxidases. However, the results also showed that the paraperoxidase-like character of GbPrx is not an obstacle for oxidizing the three monolignols compared with high-spin ferric peroxidases. Taken together, these results mean that the time at which the evolutionary gain of the segment of the route that leads to the biosynthesis of S lignins took place in seed plants needs to be revised.  相似文献   

10.
Lignin plays a vital role in plant adaptation to terrestrial environments. The cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and might have contributed to the lignin diversity in plants. To investigate the evolutionary history and functional differentiation of the CAD gene family, we made a comprehensive evolutionary analysis of this gene family from 52 species, including bacteria, early eukaryotes and green plants. The phylogenetic analysis, together with gene structure and function, indicates that all members of land plants, except two of moss, could be divided into three classes. Members of Class I (bona fide CAD), generally accepted as the primary genes involved in the monolignol biosynthesis, are all from vascular plants, and form a robustly supported monophyletic group with the lycophyte CADs at the basal position. This class is also conserved in the predicted three-dimensional structure and the residues constituting the substrate-binding pocket of the proteins. Given that Selaginella has real lignin, the above evidence strongly suggests that the earliest occurrence of the bona fide CAD in the lycophyte could be directly correlated with the origin of lignin. Class II comprises members more similar to the aspen sinapyl alcohol dehydrogenase gene, and includes three groups corresponding to lycophyte, gymnosperm, and angiosperm. Class III is conserved in land plants. The three classes differ in patterns of evolution and expression, implying that functional divergence has occurred among them. Our study also supports the hypothesis of convergent evolution of lignin biosynthesis between red algae and vascular plants.  相似文献   

11.
D Lee  K Meyer  C Chapple    C J Douglas 《The Plant cell》1997,9(11):1985-1998
The phenylpropanoid enzyme 4-coumarate:coenzyme A ligase (4CL) is considered necessary to activate the hydroxycinnamic acids for the biosynthesis of the coniferyl and sinapyl alcohols subsequently polymerized into lignin. To clarify the role played by 4CL in the biosynthesis of the guaiacyl (G) and syringyl (S) units characteristic of angiosperm lignin, we generated 4CL antisense Arabidopsis lines having as low as 8% residual 4CL activity. The plants had decreases in thioglycolic acid-extractable lignin correlating with decreases in 4CL activity. Nitrobenzene oxidation of cell walls from bolting stems revealed a significant decrease in G units in 4CL-suppressed plants; however, levels of S lignin units were unchanged in even the most severely 4CL-suppressed plants. These effects led to a large decrease in the G/S ratio in these plants. Our results suggest that an uncharacterized metabolic route to sinapyl alcohol, which is independent of 4CL, may exist in Arabidopsis. They also demonstrate that repression of 4CL activity may provide an avenue to manipulate angiosperm lignin subunit composition in a predictable manner.  相似文献   

12.
Zhang K  Qian Q  Huang Z  Wang Y  Li M  Hong L  Zeng D  Gu M  Chu C  Cheng Z 《Plant physiology》2006,140(3):972-983
Lignin content and composition are two important agronomic traits for the utilization of agricultural residues. Rice (Oryza sativa) gold hull and internode phenotype is a classical morphological marker trait that has long been applied to breeding and genetics study. In this study, we have cloned the GOLD HULL AND INTERNODE2 (GH2) gene in rice using a map-based cloning approach. The result shows that the gh2 mutant is a lignin-deficient mutant, and GH2 encodes a cinnamyl-alcohol dehydrogenase (CAD). Consistent with this finding, extracts from roots, internodes, hulls, and panicles of the gh2 plants exhibited drastically reduced CAD activity and undetectable sinapyl alcohol dehydrogenase activity. When expressed in Escherichia coli, purified recombinant GH2 was found to exhibit strong catalytic ability toward coniferaldehyde and sinapaldehyde, while the mutant protein gh2 completely lost the corresponding CAD and sinapyl alcohol dehydrogenase activities. Further phenotypic analysis of the gh2 mutant plants revealed that the p-hydroxyphenyl, guaiacyl, and sinapyl monomers were reduced in almost the same ratio compared to the wild type. Our results suggest GH2 acts as a primarily multifunctional CAD to synthesize coniferyl and sinapyl alcohol precursors in rice lignin biosynthesis.  相似文献   

13.
14.
15.
Studying lignin-biosynthetic-pathway mutants and transgenics provides insights into plant responses to perturbations of the lignification system, and enhances our understanding of normal lignification. When enzymes late in the pathway are downregulated, significant changes in the composition and structure of lignin may result. NMR spectroscopy provides powerful diagnostic tools for elucidating structures in the difficult lignin polymer, hinting at the chemical and biochemical changes that have occurred. COMT (caffeic acid O-methyl transferase) downregulation in poplar results in the incorporation of 5-hydroxyconiferyl alcohol into lignins via typical radical coupling reactions, but post-coupling quinone methide internal trapping reactions produce novel benzodioxane units in the lignin. CAD (cinnamyl alcohol dehydrogenase) downregulation results in the incorporation of the hydroxycinnamyl aldehyde monolignol precursors intimately into the polymer. Sinapyl aldehyde cross-couples 8-O-4 with both guaiacyl and syringyl units in the growing polymer, whereas coniferyl aldehyde cross-couples 8-O-4 only with syringyl units, reflecting simple chemical cross-coupling propensities. The incorporation of hydroxycinnamyl aldehyde and 5-hydroxyconiferyl alcohol monomers indicates that these monolignol intermediates are secreted to the cell wall for lignification. The recognition that novel units can incorporate into lignins portends significantly expanded opportunities for engineering the composition and consequent properties of lignin for improved utilization of valuable plant resources.  相似文献   

16.

Main conclusion

Nine CAD/CAD-like genes in P. tomentosa were classified into four classes based on expression patterns, phylogenetic analysis and biochemical properties with modification for the previous claim of SAD. Cinnamyl alcohol dehydrogenase (CAD) functions in monolignol biosynthesis and plays a critical role in wood development and defense. In this study, we isolated and cloned nine CAD/CAD-like genes in the Populus tomentosa genome. We investigated differential expression using microarray chips and found that PtoCAD1 was highly expressed in bud, root and vascular tissues (xylem and phloem) with the greatest expression in the root. Differential expression in tissues was demonstrated for PtoCAD3, PtoCAD6 and PtoCAD9. Biochemical analysis of purified PtoCADs in vitro indicated PtoCAD1, PtoCAD2 and PtoCAD8 had detectable activity against both coniferaldehyde and sinapaldehyde. PtoCAD1 used both substrates with high efficiency. PtoCAD2 showed no specific requirement for sinapaldehyde in spite of its high identity with so-called PtrSAD (sinapyl alcohol dehydrogenase). In addition, the enzymatic activity of PtoCAD1 and PtoCAD2 was affected by temperature. We classified these nine CAD/CAD-like genes into four classes: class I included PtoCAD1, which was a bone fide CAD with the highest activity; class II included PtoCAD2, -5, -7, -8, which might function in monolignol biosynthesis and defense; class III genes included PtoCAD3, -6, -9, which have a distinct expression pattern; class IV included PtoCAD12, which has a distinct structure. These data suggest divergence of the PtoCADs and its homologs, related to their functions. We propose genes in class II are a subset of CAD genes that evolved before angiosperms appeared. These results suggest CAD/CAD-like genes in classes I and II play a role in monolignol biosynthesis and contribute to our knowledge of lignin biosynthesis in P. tomentosa.  相似文献   

17.
The substrate-specific induction of wheat (Triticum aestivum L. cv Fenman) leaf cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) was examined in relation to its role in regulating the composition of defensive lignin induced at wound margins. Treatment of wounds with a partially acetylated chitosan hydrolysate or spores of the nonpathogen Botrytis cinerea elicited lignification at wound margins and invoked significant increases in phenylalanine ammonia-lyase (EC 4.3.1.5), peroxidase (EC 1.11.1.7), and CAD activities. The substrate-specific induction of CAD with time was determined in elicitor-treated leaves and in excised lignifying wounds. In whole leaf extracts no significant increases in p-cou-maryl and coniferyl alcohol dehydrogenase activities were detectable, but a significant 5-fold increase in sinapyl alcohol dehydrogenase activity was evident 32 h after elicitor treatment. Similarly, fungal challenge resulted in elevated levels of only sinapyl alcohol dehydrogenase in whole-leaf extracts. In excised lignifying tissues p-coumaryl alcohol dehydrogenase levels were similar to those observed in healthy tissue. A small yet significant increase in coniferyl alcohol dehydrogenase was apparent, but the most dramatic increase occurred in sinapyl alcohol dehydrogenase activity, which increased to values approximately 10 times higher than the untreated controls. Our results show for the first time that CAD induction in lignifying tissues of wheat is predominantly attributable to highly localized increases in sinapyl alcohol dehydrogenase activity.  相似文献   

18.
Abstract The 4‐coumarate:coenzyme A ligase (4CL) is the branch point enzyme that channels the general phenylpropanoid metabolism into specific lignin and flavonoid biosynthesis branches. Genetic engineering experiments on the 4CL gene have been carried out in many species, but the precise functions of different gene members are still unresolved. To investigate the evolutionary relationships and functional differentiation of the 4CL gene family, we made a comprehensive evolutionary analysis of this gene family from 27 species representing the major lineages of land plants. The phylogenetic analysis indicates that both vascular and seed plant 4CL genes form monophyletic groups, and that three and two 4CL classes can be recognized in gymnosperms and angiosperms, respectively. The evolutionary rate and frequency of duplication of the 4CL gene family are much more conserved than that of the CAD/SAD (cinnamyl/sinapyl alcohol dehydrogenase) gene family, which catalyzes the last step in monolignol biosynthesis. This may be due to different selective pressures on these genes whose products catalyze different steps in the biosynthesis pathway. In addition, we found two new major classes of 4CL genes in gymnosperms.  相似文献   

19.
20.
Lignins are cell wall phenolic heteropolymers which result from the oxidative coupling of three monolignols, p-coumaryl, coniferyl and sinapyl alcohol, in a reaction mediated by peroxidases. The most distinctive variation in the monomer composition of lignins in vascular plants is that found between the two main groups of seed plants. Thus, while gymnosperms lignins are typically composed of G units, with a minor proportion of H units, angiosperms lignins are largely composed of similar levels of G and S units. The presence of S units in angiosperm lignins raises certain concerns in relation with the step of lignin assembly due to the inability of most peroxidases to oxidize syringyl moieties. Zinnia elegans is currently used as a model for lignification studies: – first because of the simplicity and duality of the lignification pattern shown by hypocotyls and stems, in which hypocotyl lignins are typical of angiosperms, while young stem lignins partially resemble those occurring in gymnosperms. Secondly, because of the nature of the peroxidase isoenzyme complement, which is almost completely restricted to the presence of a basic peroxidase isoenzyme, which is capable of oxidizing both coniferyl and sinapyl alcohol, as well as both coniferyl and sinapyl aldehyde. In fact, the versatility of this enzyme is such that the substrate preference covers the three p-hydroxybenzaldehydes and the three p-hydroxycinnamic acids. The basic pI nature of this peroxidase is not an exceptional frame point in this system since basic peroxidases are differentially expressed during lignification in other model systems, show unusual and unique biochemical properties as regards the oxidation of syringyl moieties, and their down-regulation in transgenic plants leads to a reduction in lignin (G+S) levels. Basic peroxidase isoenzymes capable of oxidizing syringyl moieties are already present in basal gymnosperms, an observation that supports the idea that these enzymes were probably present in an ancestral plant species, pre-dating the early radiation of seed plants. It also suggests that the evolutionary gain of the monolignol branch which leads to the biosynthesis of sinapyl alcohol, and of course to syringyl lignins, was not only possible but also favored because the enzymes responsible for its polymerization had evolved previously. In this scenario, it is not surprising that these enzymes responsible for lignin construction appeared early in the evolution of land plants, and have been largely conserved during plant evolution. Abreviations: 4CL –p-hydroxycinnamate CoA ligase; C3H –p-coumarate-3-hydroxylase; C4H – cinnamate-4-hydroxylase; p-CA –p-coumaric acid; CAD – coniferyl alcohol dehydrogenase; CAld5H – coniferylaldehyde-5-hydroxylase; CCR –p-hydroxycinnamoyl-CoA reductase; CoI – compound I; CoII – compound II; G – guaiacyl unit; H –p-hydroxyphenyl unit; PAL – phenylalanine ammonia-lyase; S – syringyl unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号