首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the kinetics of beta-galactosidase (EC 3.2.1.23) induction in the yeast Kluyveromyces lactis. Enzyme activity began to increase 10 to 15 min, about 1/10 of a cell generation, after the addition of inducer and continued to increase linearly for from 7 to 9 cell generations before reaching a maximum, some 125- to 150-fold above the basal level of uninduced cells. Thereafter, as long as logarithmic growth was maintained, enzyme levels remained high, but enzyme levels dropped to a value only 5- to 10-fold above the basal level if cells entered stationary phase. Enzyme induction required the constant presence of inducer, since removal of inducer caused a reduction in enzyme level. Three nongratuitous inducers of beta-galactosidase activity, lactose, galactose, and lactobionic acid, were identified. Several inducers of the lac operon of Escherichia coli, including methyl-, isopropyl- and phenyl-1-thio-beta-d-galactoside, and thioallolactose did not induce beta-galactosidase in K. lactis even though they entered the cell. The maximum rate of enzyme induction was only achieved with lactose concentrations of greater than 1 to 2 mM. The initial differential rate of beta-galactosidase appearance after induction was reduced in medium containing glucose, indicating transient carbon catabolite repression. However, glucose did not exclude lactose from K. lactis, it did not cause permanent carbon catabolite repression of beta-galactosidase synthesis, and it did not prevent lactose utilization. These three results are in direct contrast to those observed for lactose utilization in E. coli. Furthermore, these results, along with our observation that K. lactis grew slightly faster on lactose than on glucose, indicate that this organism has evolved an efficient system for utilizing lactose.  相似文献   

2.
Cells of Lactobacillus bulgaricus, Escherichia coli, and Kluyveromyces (Saccharomyces) lactis immobilized in polyacrylamide gel beads retained 27 to 61% of the beta-galactosidase activity of intact cells. Optimum temperature and pH and thermostability of these microbial beta-galactosidases were negligibly affected by the immobilization. Km values of beta-galactosidase in immobilized cells of L. bulgaricus, E. coli, and K. lactis toward lactose were 4.2, 5.4, and 30 mM, respectively. Neither inhibition nor activation of beta-galactosidase in immobilized L. bulgaricus and E. coli appeared in the presence of galactose, but remarkable inhibition by galactose was detected in the case of the enzyme of immobilized K. lactis. Glucose inhibited noncompetitively the activity of three species of immobilized microbial cells. These kinetic properties were almost the same as those of free beta-galactosidase extracted from individual microorganisms. The activity of immobilized K. lactis was fairly stable during repeated runs, but those of E. coli and L. bulgaricus decreased gradually. These immobilized microbial cells, when introduced into skim milk, demonstrated high activity for converting lactose to monosaccharides. The flavor of skim milk was hardly affected by treatment with these immobilized cells, although the degree of sweetness was raised considerably.  相似文献   

3.
Hydrolysis of lactose by immobilized microorganisms.   总被引:1,自引:0,他引:1  
Cells of Lactobacillus bulgaricus, Escherichia coli, and Kluyveromyces (Saccharomyces) lactis immobilized in polyacrylamide gel beads retained 27 to 61% of the beta-galactosidase activity of intact cells. Optimum temperature and pH and thermostability of these microbial beta-galactosidases were negligibly affected by the immobilization. Km values of beta-galactosidase in immobilized cells of L. bulgaricus, E. coli, and K. lactis toward lactose were 4.2, 5.4, and 30 mM, respectively. Neither inhibition nor activation of beta-galactosidase in immobilized L. bulgaricus and E. coli appeared in the presence of galactose, but remarkable inhibition by galactose was detected in the case of the enzyme of immobilized K. lactis. Glucose inhibited noncompetitively the activity of three species of immobilized microbial cells. These kinetic properties were almost the same as those of free beta-galactosidase extracted from individual microorganisms. The activity of immobilized K. lactis was fairly stable during repeated runs, but those of E. coli and L. bulgaricus decreased gradually. These immobilized microbial cells, when introduced into skim milk, demonstrated high activity for converting lactose to monosaccharides. The flavor of skim milk was hardly affected by treatment with these immobilized cells, although the degree of sweetness was raised considerably.  相似文献   

4.
5.
A new graphical method was developed to determine the kinetic parameters in the Michaelis-Menten-type equation. This method was then applied to studying the kinetics of lactose hydrolysis by Aspergillus niger beta-galactosidase. In this study, the reaction temperature ranged between 8 and 60 degrees C, and the initial lactose concentration ranged between 2.5 and 20%. A kinetic model similar to the conventional Michaelis-Menten equation with competitive product inhibition by galactose was tested using this graphical method as well as a nonlinear computer regression method. The experimental data and the model fit together fairly well at 50 degrees C. However, a relative large disparity was found for reactions at 30 degrees C. A three-parameter integrated model derived from the reversible reaction mechanism simulates the experimental data very well at all temperatures studied. However, this reversible reaction model does not follow the Arrhenius temperature dependence. Nevertheless, reaction rate constants for the proposed model involving the enzyme-galactose complex (in addition to the Michaelis complex) as an intermediate in lactose hydrolysis follow the Arrhenius temperature dependence fairly well, suggesting that this model can be best used for describing the enzymatic lactose hydrolysis. The lack of fit between the model predictions and data may be largely attributed to the effects of galactose mutarotation and oligosaccharide formation during lactose hydrolysis.  相似文献   

6.
This work presents a multi-route, non-structural kinetic model for interpretation of ethanol fermentation of lactose using a recombinant flocculent Saccharomyces cerevisiae strain expressing both the LAC4 (coding for beta-galactosidase) and LAC12 (coding for lactose permease) genes of Kluyveromyces lactis. In this model, the values of different metabolic pathways are calculated applying a modified Monod equation rate in which the growth rate is proportional to the concentration of a key enzyme controlling the single metabolic pathway. In this study, three main metabolic routes for S. cerevisiae are considered: oxidation of lactose, reduction of lactose (producing ethanol), and oxidation of ethanol. The main bioprocess variables determined experimentally were lactose, ethanol, biomass, and dissolved oxygen concentrations. Parameters of the proposed kinetic model were established by fitting the experimental data obtained in a small lab-scale fermentor with the initial lactose concentrations ranging from 5 g/dm3 to 50 g/dm3. A very good agreement between experimental data and simulated profiles of the main variables (lactose, ethanol, biomass, and dissolved oxygen concentrations) was achieved.  相似文献   

7.
A high degree of conversion is desired when lactose is hydrolyzed to glucose and galactose. This produces, however, a high concentration of galactose, which is inhibitory for the enzyme catalyst (beta-galactosidase). The inhibition can be reduced by limiting the conversion per pass over the enzyme (e.g. to ca. 50%), separating unconverted lactose from the reactor effluent, and recycling it to the reactor inlet. (This allows the overall conversion to be raised to ca. 80-90%). The solubilities of lactose, glucose, and galactose have been determined at various temperatures and for sugar mixtures having different concentrations and degrees of hydrolysis. Various cooling crystallizations have defined convenient and simple processes for the selective separation of lactose from its hydrolysis products.  相似文献   

8.
Induction of β-Galactosidase in Lactobacillus plantarum   总被引:5,自引:1,他引:4  
  相似文献   

9.
10.
In Kluyveromyces lactis, galactose transport has been thought to be mediated by the lactose permease encoded by LAC12. In fact, a lac12 mutant unable to grow on lactose did not grow on galactose either and showed low and uninducible galactose uptake activity. The existence of other galactose transport systems, at low and at high affinity, had, however, been hypothesized on the basis of galactose uptake kinetics studies. Here we confirmed the existence of a second galactose transporter and we isolated its structural gene. It turned out to be HGT1, previously identified as encoding the high-affinity glucose carrier. Analysis of galactose transporter mutants, hgt1 and lac12, and the double mutant hgt1lac12, suggested that Hgt1 was the high-affinity and Lac12 was the low-affinity galactose transporter. HGT1 expression was strongly induced by galactose and insensitive to glucose repression. This could explain the rapid adaptation to galactose observed in K. lactis after a shift from glucose to galactose medium.  相似文献   

11.
A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose-phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [14C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM. We conclude from our data that phosphorylation of glucose by S. lactis 133 can be mediated by only two mechanisms: (i) via ATP-dependent glucokinase, and (ii) by the phosphoenolpyruvate-dependent mannose-PTS system.  相似文献   

12.
A mathematic model for describing the Michaelis-Menten-type reaction kinetics with product competitive inhibition and side-reaction is proposed. A multiresponse nonlinear simulation program was employed to determine the coefficients of a four-parameter rate expression. The rate expression was compared with the conventional Michaelis-Menten reaction rate models with and without product inhibition. Experimental data were obtained using beta-galactosidase of Kluyveromyces lactis immobilized on cotton fabric in a batch system at a temperature of 37 degrees C and at various initial concentrations of dissolved lactose ranging from 3-12.5% (w/v). The reaction is followed by concentration changes with time in the tank. Samples were obtained after the outlet stream of the packed bed reactor is mixed in a well-stirred tank. High-performance liquid chromatography (HPLC) was applied to monitor the concentrations of all the sugars (reactants as well as products). The four-parameter rate model is featured with a term to describe the formation of trisaccharides, a side-reaction of the enzymatic hydrolysis. The proposed model simulates the process of lactose hydrolysis and the formation of glucose and galactose, giving better accuracy compared with the previous models.  相似文献   

13.
The kinetic constants (Km, Vmax, and inhibition constants for the different products) of soluble and different immobilized preparations of beta-galactosidase from Kluyveromyces lactis were determined. For the soluble enzyme, the Km was 3.6 mM, while the competitive inhibition constant by galactose was 45 mM and the noncompetitive one by glucose was 758 mM. The immobilized preparations conserved similar values of Km and competitive inhibition, but in some instances much higher values for the noncompetitive inhibition constants were obtained. Thus, when glyoxyl or glutaraldehyde supports were used to immobilize the enzyme, the noncompetitive inhibition was greatly reduced (Ki approximately 15,000 and >40,000 mM, respectively), whereas when using sugar chains to immobilize the enzyme the behavior had an effect very similar to the soluble enzyme. These results presented a great practical relevance. While using the soluble enzyme or the enzyme immobilized via the sugar chain as biocatalysts in the hydrolysis of lactose in milk only around 90% of the substrate was hydrolyzed, by using of these the enzyme immobilized via the glyoxyl or the glutaraldehyde groups, more than 99% of the lactose in milk was hydrolyzed.  相似文献   

14.
A gratuitous induction system based on the strong, indigenous LAC4 promoter was developed for Kluyveromyces lactis. To prevent consumption of the inducer galactose, a strain with a gal1-209 mutation was employed; this mutation disables the galactokinase function but retains the regulatory function for induction. The Escherichia coli lacZ gene (encoding beta-galactosidase) is functional in K. lactis and was used as the reporter gene downstream of the LAC4 promoter on a multicopy plasmid. The gal1-209 strain exhibited several unexpected phenomena, including partial consumption of the inducer galactose (although at a much slower rate relative to GAL1 strains) and growth inhibition at high concentrations of galactose. These unusual characteristics, however, did not prevent the successful construction of a strong gratuitous induction system. Due to the low rate of inducer consumption for the gratuitous strain, very low concentrations of galactose (1:20 galactose:glucose) resulted in high-level induction. Under these conditions, beta-galactosidase specific and volumetric activities were 4.2- and 5.5-fold higher, respectively, than those for the "GAL1" nongratuitous strain. This research demonstrated the improved productivity possible via LAC4 promoter-based gratuitous induction (and thus a more stable inducer concentration). The effects of various carbon source concentrations on growth and induction were also determined.  相似文献   

15.
The cladoceran Daphnia pulex is well established as a model for ecotoxicology. Here, we show that D. pulex is also useful for investigating the effects of toxins on the heart in situ and the toxic effects in lactose intolerance. The mean heart rate at 10 degrees C was 195.9+/-27.0 beats/min (n=276, range 89.2-249.2, >80% 170-230 beats/min). D. pulex heart responded to caffeine, isoproteronol, adrenaline, propranolol and carbachol in the bathing medium. Lactose (50-200 mM) inhibited the heart rate by 30-100% (K(1/2)=60 mM) and generated severe arrhythmia within 60 min. These effects were fully reversible by 3-4 h. Sucrose (100-200 mM) also inhibited the heart rate, but glucose (100-200 mM) and galactose (100-200 mM) had no effect, suggesting that the inhibition by lactose or sucrose was not simply an osmotic effect. The potent antibiotic ampicillin did not prevent the lactose inhibition, and two diols known to be generated by bacteria under anaerobic conditions were also without effect. The lack of effect of l-ribose (2 mM), a potent inhibitor of beta-galactosidase, supported the hypothesis that lactose and other disaccharides may affect directly ion channels in the heart. The results show that D. pulex is a novel model system for studying effects of agonists and toxins on cell signalling and ion channels in situ.  相似文献   

16.
The production of galacto-oligosaccharides (GOS) from lactose by A. oryzae beta-galactosidase immobilized on cotton cloth was studied. The total amounts and types of GOS produced were mainly affected by the initial lactose concentration in the reaction media. In general, more and larger GOS can be produced with higher initial lactose concentrations. A maximum GOS production of 27% (w/w) of initial lactose was achieved at 50% lactose conversion with 500 g/L of initial lactose concentration. Tri-saccharides were the major types of GOS formed, accounting for more than 70% of the total GOS produced in the reactions. Temperature and pH affected the reaction rate, but did not result in any changes in GOS formation. The presence of galactose and glucose at the concentrations encountered near maximum GOS greatly inhibited the reactions and reduced GOS yield by as much as 15%. The cotton cloth as the support matrix for enzyme immobilization did not affect the GOS formation characteristics of the enzyme, suggesting no diffusion limitation in the enzyme carrier. The thermal stability of the enzyme increased approximately 25-fold upon immobilization on cotton cloth. The half-life for the immobilized enzyme on cotton cloth was more than 1 year at 40 degrees C and 48 days at 50 degrees C. Stable, continuous operation in a plugflow reactor was demonstrated for 2 weeks without any apparent problem. A maximum GOS production of 21 and 26% (w/w) of total sugars was attained with a feed solution containing 200 and 400 g/L of lactose, respectively, at pH 4.5 and 40 degrees C. The corresponding reactor productivities were 80 and 106 g/L/h, respectively, which are at least several-fold higher than those previously reported.  相似文献   

17.
In Lactococcus lactis subsp. cremoris FD1, galactose and lactose are both transported and phosphorylated by phosphotransferase systems. Lactose 6-phosphate (lactose-6P) is hydrolyzed intracellularly to galactose-6P and glucose. Glucose enters glycolysis as glucose-6P, whereas galactose-6P is metabolized via the tagatose-6P pathway and enters glycolysis at the tagatose diphosphate and fructose diphosphate pool. Galactose would therefore be a gluconeogenic sugar in L. lactis subsp. cremoris FD1, but since fructose 1,6-diphosphatase is not present in this strain, galactose cannot serve as an essential biomass precursor (glucose-6P or fructose-6P) but only as an energy (ATP) source. Analysis of the growth energetics shows that transition from N limitation to limitation by glucose-6P or fructose-6P gives rise to a very high growth-related ATP consumption (152 mmol of ATP per g of biomass) compared with the value in cultures which are not limited by glucose-6P or fructose-6P (15 to 50 mmol of ATP per g of biomass). During lactose metabolism, the galactose flux through the tagatose-6P pathway (r(max) = 1.2 h) is lower than the glucose flux through glycolysis (r(max) = 1.5 h) and intracellular galactose-6P is dephosphorylated; this is followed by expulsion of galactose. Expulsion of a metabolizable sugar has not been reported previously, and the specific rate of galactose expulsion is up to 0.61 g of galactose g of biomass h depending on the lactose flux and the metabolic state of the bacteria. Galactose excreted during batch fermentation on lactose is reabsorbed and metabolized when lactose is depleted from the medium. In vitro incubation of galactose-6P (50 mM) and permeabilized cells (8 g/liter) gives a supernatant containing free galactose (50 mM) but no P(i) (less than 0.5 mM). No organic compound except the liberated galactose is present in sufficient concentration to bind the phosphate. Phosphate is quantitatively recovered in the supernatant as P(i) by hydrolysis with alkaline phosphatase (EC 3.1.3.1), whereas inorganic pyrophosphatase (EC 3.6.1.1) cannot hydrolyze the compound. The results indicate that the unknown phosphate-containing compound might be polyphosphate.  相似文献   

18.
19.
Growth on lactose was found to be restricted in an Escherichia coli strain deficient in its ability to transport glucose and galactose. If the latter sugars were removed from the medium as they were being produced, a wild-type strain grew only poorly, while the transport-deficient strain did not grow at all. These results suggested that all of the products of beta-galactosidase action on lactose are released into the medium before being metabolized. This contention was strongly supported by the finding that the appearance of products in the medium was equal to lactose disappearance at three limiting lactose concentrations and by an experiment which showed that essentially all of the label from added lactose ( [1-14C]glucose) was found in the medium as glucose when chased with unlabelled lactose.  相似文献   

20.
We have analyzed a GAL1 mutant (gal1-r strain) of the yeast Kluyveromyces lactis which lacks the induction of beta-galactosidase and the enzymes of the Leloir pathway in the presence of galactose. The data show that the K. lactis GAL1 gene product has, in addition to galactokinase activity, a function required for induction of the lactose system. This regulatory function is not dependent on galactokinase activity, as it is still present in a galactokinase-negative mutant (gal1-209). Complementation studies in Saccharomyces cervisiae show that K. lactis GAL1 and gal1-209, but not gal1-r, complement the gal3 mutation. We conclude that the regulatory function of GAL1 in K. lactis soon after induction is similar to the function of GAL3 in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号