首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two overlapping promoters that control mRNA synthesis at the galactose operon contain three phased stretches of adenine residues, located around positions -84.5, -74 and -63, with respect ot the start of the P1 promoter. As a result, the corresponding DNA sequence is bent, an anomaly that is relieved by the addition of small concentrations of drugs like distamycin A or netropsin. By abortive initiation assays performed on several DNA fragments derived from the wild-type promoter or from various mutants we show that the curved sequence increases the strength of the P1 promoter. In the absence of cyclic AMP (cAMP) and of the corresponding receptor protein (CRP), the upstream curved sequences enhance the rate of isomerization from the closed to the open complex at P1. This effect is abolished when distamycin A is bound in the bent region. In the presence of cAMP-CRP, a more drastic change is observed: activation of the gal P1 promoter takes place at a different formal step, depending whether the upstream curved sequence is present or not (enhancement of the rate of conversion from a closed to an open complex instead of an increase in the affinity of the enzyme during closed complex formation). These data, together with previous results obtained with other mutants of the gal control region, suggest that several closed complexes corresponding to different nucleoprotein arrangements are formed during open complex formation at gal P1, in the presence of CRP.  相似文献   

2.
3.
Polyacrylamide gel electrophoresis has been used to visualise and quantitate complexes between the Escherichia coli cyclic AMP receptor protein (CRP) and DNA fragments containing the promoter region of either the E. coli galactose or lactose operons. We show that, although CRP binding to the gal fragment is weaker than binding to the lac fragment, in each case, stable complexes are formed between one dimer of CRP and one molecule of DNA. We have examined the effects of a series of deletions and point mutations in the gal promoter region on CRP binding. From the position of deletions and mutations which prevent the formation of stable complexes, we deduce the location and extent of the sequence at the CRP binding site. We show that it covers approximately the same length of sequence as the binding site at the lac promoter. Unlike the lac site, the gal site contains no palindromic sequence. We discuss the importance of symmetry in the sequence at CRP binding sites and the validity of CRP binding consensus sequences which have been proposed.  相似文献   

4.
5.
6.
The regulation of open complex formation at the Escherichia coli galactose operon promoters by galactose repressor and catabolite activator protein/cyclic AMP (CAP/cAMP) was investigated in DNA-binding and kinetic experiments performed in vitro. We found that gal repressor and CAP/cAMP bind to the gal regulatory region independently, resulting in simultaneous occupancy of the two gal operators and the CAP/cAMP binding site. Both CAP/cAMP and gal repressor altered the partitioning of RNA polymerase between the two overlapping gal promoters. Open complexes formed in the absence of added regulatory proteins were partitioned between gal P1 and P2 with occupancies of 25% and 75%, respectively. CAP/cAMP caused open complexes to be formed nearly exclusively at P1 (98% occupancy). gal repressor caused a co-ordinated, but incomplete, switch in promoter partitioning from P1 to P2 in both the absence and presence of CAP/cAMP. We measured the kinetic constants governing open complex formation and decay at the gal promoters in the absence and presence of gal repressor and CAP/cAMP. CAP/cAMP had the largest effect on the kinetics of open complex formation, resulting in a 30-fold increase in the apparent binding constant. We conclude that the regulation of open complex formation at the gal promoters does not result from competition between gal repressor, CAP/cAMP and RNA polymerase for binding at the gal operon regulatory region, but instead results from the interactions of the three proteins during the formation of a nucleoprotein complex on the gal DNA fragment. Finally, we present a kinetic model for the regulation of open complex formation at the gal operon.  相似文献   

7.
8.
9.
10.
11.
Is DNA unwound by the cyclic AMP receptor protein?   总被引:18,自引:12,他引:6       下载免费PDF全文
Superhelical pBR 322 derivatives have been relaxed by eukaryotic topoisomerase I in the presence or in the absence of E. coli cyclic AMP receptor protein (CRP) and of cyclic AMP (cAMP). CRP alone, or cAMP alone do not affect the average linking number of the distribution of the relaxed topoisomers. Hence, they do not unwind the template. In the presence of cAMP, CRP induces a small unwinding. The extent of this unwinding is barely modified when the relaxation is carried out on a similar vector plasmid where the CRP binding site of the lac or of the gal operon has been inserted. Under these conditions, we checked that CRP occupies the lactose control site and that upon addition of RNA polymerase, the corresponding promoter is readily activated. These findings are difficult to reconcile with the proposal that activation of these promoters results from the binding of the CRP-cAMP complex to left-handed DNA sequences.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
A deletion of the C-terminal part of the alpha-subunit of RNA polymerase is known to affect differently promoters activated by CRP depending on the location of the CRP binding site at the promoter. When the CRP binding site is located at -61.5, as at lacP1 (a type I promoter), activation is strongly impaired while it is not significantly affected at galP1 where CRP binds 41.5 bp upstream of the start of the message (type II promoter). We have investigated the differences in the architecture of the corresponding open complexes by comparing the positioning of holoenzymes reconstituted respectively with native or with truncated alpha-subunits (containing the first 235 or 256 residues of a) at two 'up' promoter mutants of the lacP1 and galP1 promoters (respectively lacUV5 and gal9A16C). First, the affinity of wild-type RNA polymerase for both promoters is increased by the presence of CRP and cAMP. By contrast, holoenzymes reconstituted with truncated alpha-subunits, show cooperative binding at the galP1 promoter only. Second, footprinting data confirm these observations and indicate that the truncated holoenzymes are unable to recognize regions of the promoter upstream from position -40. The absence of contacts between the truncated enzymes and CRP at the lacP1 promoter can explain the deficiency in activation. At the galP1 promoter, where the CRP site is closer to the initiation site, protein-protein contacts can still occur with the truncated polymerases, showing that the C-terminal part of the alpha-subunit is not involved in activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号