首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vegetable oil is the usual carbon source for the production of biosurfactants (BS), mannosylerythritol lipids (MEL). To simplify the procedures of BS production and recovery, we investigated the extracellular production of MEL from water-soluble carbon sources instead of vegetable oils by using two representative yeast strains. The formation of extracellular MEL from glucose was confirmed by thin layer chromatography (TLC) and HPLC analysis. On glucose cultivation, pure MEL were easily prepared by only solvent extraction of the culture medium, different from the case of soybean oil cultivation. The fatty acid profile of the major MEL produced from glucose was similar to that produced from soybean oil based on GC–MS analysis. The resting cells of Pseudozyma antarctica T-34 produced MEL by feeding of glucose only and gave a yield of 12 g l−1. In contrast, Pseudozyma aphidis ATCC 32657 gave no MEL from glucose. Moreover, the extracellular lipase activities were detected at high levels during the cultivation regardless of the carbon sources. These results indicate that all the biosynthesis pathways for MEL in P. antarctica T-34 should constitutively function. In conclusion, P. antarctica T-34 thus has potential for BS production from glucose.  相似文献   

2.
Mannosylerythritol lipids (MELs), which are glycolipid biosurfactants produced by Pseudozyma yeasts, show not only excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from glucose as the sole carbon source, P. antarctica was found to produce unknown glycolipids more hydrophilic than conventional “di-acylated MELs,” which have two fatty acyl esters on the mannose moiety. Based on a detailed characterization, the most hydrophilic one was identified as 4-O-(3′-O-alka(e)noyl-β-d-mannopyranosyl)-d-erythritol namely, “mono-acylated MEL.” The mono-acylated MEL reduced the surface tension of water to 33.8 mN/m at a critical micelle concentration (CMC) of 3.6 × 10−4 M, and its hydrophilic–lipophilic balance was tentatively calculated to be 12.15. The observed CMC was 100-fold higher than that of the MELs hitherto reported. Interestingly, of the yeast strains of the genus Pseudozyma, only P. antarctica and P. parantarctica gave the mono-acylated MEL from glucose, despite a great diversity of di-acylated MEL producers in the genus. These strains produced MELs including the mono-acylated one at a rate of 20–25%. From these results, the new MEL is likely to have great potential for use in oil-in-water-type emulsifiers and washing detergents because of its higher water solubility compared to conventional MELs and will thus contribute to facilitating a broad range of applications for the environmentally advanced surfactants.  相似文献   

3.
The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MEL) was undertaken based on the analysis of ribosomal DNA sequences on the yeast strains of the genus Pseudozyma. Pseudozyma rugulosa NBRC 10877 was found to produce a large amount of glycolipids from soybean oil. Fluorescence microscopic observation also demonstrated that the strain significantly accumulates polar lipids in the cells. The structure of the glycolipids produced by the strain was analyzed by 1H and 13C nuclear magnetic resonance and gas chromatography–mass spectrometry methods, and was determined to be the same as MEL produced by Pseudozyma antarctica, a well-known MEL producer. The major fatty acids of the present MEL consisted of C8 and C10 acids. Based on high performance liquid chromatography, the composition of the produced MEL was as follows: MEL-A (68%), MEL-B (12%), and MEL-C (20%). To enhance the production of MEL by the novel strain, factors affecting the production, such as carbon and nitrogen sources, were further examined. Soybean oil and sodium nitrate were the best carbon and nitrogen sources, respectively. The supplementation of a MEL precursor, such as erythritol, drastically enhanced the production yield from soybean oil at a rate of 70 to 90%. Under the optimal conditions in a shake culture, a maximum yield, productivity, and yield coefficient (on a weight basis to soybean oil supplied) of 142 g l−1, 5.0 g l−1 day−1, and 0.5 g g−1 were achieved by intermittent feeding of soybean oil and erythritol using the yeast.  相似文献   

4.
The effects of biosurfactants on the biodegradation of petroleum compounds were investigated. Candida antarctica T-34 could produce extracellular biosurfactant mannosylerythritol lipids (MELs) when it was cultured in vegetable oil. In addition, in our previous study, it was found that this strain could also produce a new type of biosurfactant while it grew on n-undecane (C11H24), and the biosurfactant was named as BS-UC. In flask culture of Candida antarctica, the addition of BS-UC could improve the biodegradation rate of some n-alkanes (e.g. 90.2% for n-decane, 90.2% for n-undecane, 89.0% for dodecane), a mixture of n-alkanes (82.3%) and kerosene (72.5%). By comparing the effects of the biosurfactants BS-UC and MEL and chemical surfactants on the biodegradation of crude oil, it was found that biosurfactants could be used to enhance the degradation of petroleum compounds instead of chemical surfactants. In a laboratory scale immobilized bioreactor, the addition of biosurfactant improved not only the emulsification of kerosene in simulated wastewater but also its biodegradation rate. The highest degradation rate of kerosene by addition of MEL and BS-UC reached 87 and 90% at 15 h, respectively. The results showed that the biosurfactant BS-UC was highly promising for work on biodegradation of hydrophobic contaminants.  相似文献   

5.
Summary The resting cells ofCandida antarctica strain T-34 was found to produce a large amount of mannosylerythritol lipids as biosurfactants when incubated in the medium containing only the carbon source. The resting cells prepared from different water-soluble carbon sources were able to produce the lipids abundantly from water-insoluble carbon sources. Under the optimal conditions in a shake culture, the concentration of the total lipids amounted to about 47 g/l after 6 days, and the yield of the lipids became higher than that obtained by using the growing cells of the strain.  相似文献   

6.
7.
n-Alkanes ranging from C12 to C18 were converted into glycolipid biosurfactants, mannosylerythritol lipids (MEL), by resting cells of Pseudozyma (Candida) antarctica T-34. The highest yield (0.87 g g–1 substrate) was obtained from 6% (v/v) of n-octadecane after 7 days reaction. The amount of MEL reached 140 g l–1 by intermittent feeding of the substrate.  相似文献   

8.
The ability of Rhodococcus erythropolis strain EK-1 to produce surfactants when grown on hydrophilic (ethanol and glucose) and hydrophobic (liquid paraffins and hexadecane) substrates was studied. The strain was found to produce surfactants with emulsifying and surface-active properties. The production of surfactants depended on the composition of the nutritive medium, nature and concentration of the sources of carbon and nitrogen, and duration of cultivation. Chemically, surfactants produced by Rhodococcus erythropolis EK-1 grown on ethanol are a complex of lipids with polysaccharide–proteinaceous substances. The lipids include glycolipids (trehalose mono- and dicorynomycolates) and common lipids (cetyl alcohol, palmitic acid, methyl n-pentadecanoate, triglycerides, and mycolic acids).  相似文献   

9.
The significance of the fatty acid composition and ergosterol content in cells for resistance to cellobiose lipids has been investigated in the cells of mutant Saccharomyces cerevisiae strains that are unable to produce ergosterol or sphingomyelin and in the cells of microorganisms that produce cellobiose lipids. S. cerevisiae mutants were shown to be less sensitive to cellobiose lipids from Cryptococcus humicola than the wild-type strain, and the strains that produced cellobiose lipids were virtually insensitive to this compound as well. The sensitivity of Pseudozyma fusiformata yeast to its own cellobiose lipids was reduced under conditions that favored the production of these compounds. No correlation between the content of ergosterol and sensitivity to cellobiose lipids was observed in S. cerevisiae or in the strains that produced cellobiose lipids. The ratio between the levels of saturated and unsaturated fatty acids in the cells of the mutant strains was correlated to the sensitivity of the cells to cellobiose lipids.  相似文献   

10.
Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by Pseudozyma yeasts. They show not only the excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from soybean oil by P. antarctica and P. rugulosa, some new extracellular glycolipids (more hydrophobic than the previously reported di-acylated MELs) were found in the culture medium. The most hydrophobic one was identified as 1-O-alka(e)noyl-4-O-[(4′,6′-di-O-acetyl-2′,3′-di-O-alka(e)noyl)-β-d-mannopyranosyl]-d-erythritol, namely tri-acylated MEL. Others were tri-acylated MELs bearing only one acetyl group. The tri-acylated MEL could be prepared by the lipase-catalyzed esterification of a di-acylated MEL with oleic acid implying that the new glycolipids are synthesized from di-acylated MELs in the culture medium containing the residual fatty acids.  相似文献   

11.
【目的】探讨葡萄糖作为外加碳源对热带海洋小球藻(Chloralla sp.HN08)生物质生产和脂、光合色素、碳水化合物及可溶性蛋白等细胞主要成份含量的影响。【方法】分析比较小球藻HN08在光合自养和兼养(添加10 g/L葡萄糖)2种营养方式下的生长速率、细胞密度、光合放氧速率、油脂相对含量,以及可溶性总糖、淀粉和可溶性蛋白的含量。【结果】结果表明,在光照条件下葡萄糖(10 g/L)能促进小球藻(Chloralla sp.HN08)生长,提高细胞终密度,而异养条件下藻细胞逐渐衰亡。兼养条件下,细胞相对生长速率及细胞终密度分别是自养条件下的6.8倍和1.3倍。兼养藻细胞中可溶性糖、淀粉、油脂含量显著高于(P0.05)光合自养细胞,然而可溶性蛋白质和光合色素含量显著低于(P0.05)光合自养细胞。添加葡萄糖的小球藻液的光饱和点和呼吸速率均高于光自养条件下的细胞,但2种培养条件下藻液的净光合速率无显著差异(P0.05)。【结论】光照条件下,添加葡萄糖可显著提高小球藻HN08相对生长速率和细胞终密度,促进油脂与淀粉的积累。  相似文献   

12.
The ability of Alcaligenes eutrophus to grow and produce polyhydroxyalkanoates (PHA) on plant oils was evaluated. When olive oil, corn oil, or palm oil was fed as a sole carbon source, the wild-type strain of A. eutrophus grew well and accumulated poly(3-hydroxybutyrate) homopolymer up to approximately 80% (w/w) of the cell dry weight during its stationary growth phase. In addition, a recombinant strain of A. eutrophus PHB4 (a PHA-negative mutant), harboring a PHA synthase gene from Aeromonas caviae, was revealed to produce a random copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate from these plant oils with a high cellular content (approximately 80% w/w). The mole fraction of 3-hydroxyhexanoate units was 4–5 mol% whatever the structure of the triglycerides fed. The polyesters produced by the A. eutrophus strains from olive oil were 200–400 kDa (the number-average molecular mass). The results demonstrate that renewable and inexpensive plant oils are excellent carbon sources for efficient production of PHA using A. eutrophus strains. Received: 3 September 1997 / Received revision: 10 November 1997 / Accepted: 16 November 1997  相似文献   

13.
Yarrowia lipolytica strain IMK 2, a yeast capable of producing and excreting citric acid, only accumulated citric acid when cell growth was restricted by specific nutrient limitations. Effective citrate accumulation was linked with the ability of cells to maintain a high rate of glucose utilisation when growth was limited. Cells limited by nitrogen (N), sulphur (S), magnesium (Mg) or phosphorus (P) accumulated between 50 and 220 mm citric acid after 168 h, with N and S limitation resulting in the highest specific rates of production. In contrast, potassium (K)-limited cells accumulated 6 mm citric acid in the same time period. Cells limited by K or lower levels of Mg or P had rates of glucose utilisation that were less than 50% of those measured in cells limited by N or S. Although limitation of strain IMK 2 by Mg or P led to citrate production, significant accumulation occured only when the threshold concentration of the limiting nutrient was exceeded. There was no large accumulation of other tricarboxylic acid (TCA) cycle acids, acetate, pyruvate, lactate or ethanol, although K-limited cells produced quantities of intracellular glycogen. Mannitol was accumulated under N, S and P limitation (up to 40 mm), as were small quantities of 2-oxoglutarate, which preceded the accumulation of citrate and all of the other TCA cycle acids measured. A clear difference was evident between the rates of glucose utilisation under N limitation between two citrate-accumulating strains (IMK 2 and Candida guilliermondii IMK 1) and a citrate non-accumulating strain, Y. lipolytica YB 423. Although these strains had similar rates of glucose utilisation during exponential growth, both strains IMK 1 and IMK 2 had specific rates of glucose utilisation under N limitation more than double that of strain YB 423.Correspondence to: J. D. Brooks 2  相似文献   

14.
Summary Using genetic hybridization analysis we identified seven polymorphic genes for the fermentation of melibiose in different Mel+ strains of Saccharomyces cerevisiae. Four laboratory strains (1453-3A, 303-49, N2, C.B.11) contained only the MEL1 gene and a wild strain (VKM Y-1830) had only the MEL2 gene. Another wild strain (CBS 4411) contained five genes: MEL3, MEL4, MEL5, MEL6 and MEL7. MEL3-MEL7 were isolated and identified by backcrosses with Mel parents (X2180-1A, S288C). A cloned MEL1 gene was used as a probe to investigate the physical structure and chromosomal location of the MEL gene family and to check the segregation of MEL genes from CBS 4411 in six complete tetrads. Restriction and Southern hybridization analyses showed that all seven genes are physically very similar. By electrokaryotyping we found that all seven genes are located on different chromosomes MEL1 on chromosome II as shown previously by Vollrath et al. (1988), MEL2 on VII, MEL3 on XVI, MEL4 on XI, MEL5 on IV, MEL6 on XIII, and MEL7 on VI. Molecular analysis of the segregation of MEL genes from strain CBS 4411 gave results identical to those from the genetic analyses. The homology in the physical structure of this MEL gene family suggests that the MEL loci have evolved by transposition of an ancestral gene to specific locations within the genome.  相似文献   

15.
A yeast belonging to Trichosporon which produces triglycerides extracellularly was isolated. This strain accumulated palmitoleic triglycerides from ethyl palmitate used as a sole carbon source. To increase the level of extracellular palmitoleic triglycerides, mutant strains which supported growth of unsaturated-fatty-acid-auxotrophic cells (Saccharomyces cerevisiae KD115) layered on the mutant colonies were screened. The mutant strain excreted palmitoleic acid as triglyceride form at a significantly high level, corresponding to about double level of the parental strain.  相似文献   

16.
The growth and lipid content of three Botryococcus braunii strains from China (CHN), United Kingdom (UK) and Japan (JAP) were compared at three temperatures (20, 25 and 30 C), three irradiances (60, 100 and 300 W m−2) and four salinities (0, 0.15, 0.25, and 0.5 M NaCl) for 30 days, respectively. In the temperature trial, the UK strain and JAP strain grew faster at 25 C than at other temperatures, while the CHN strain performed equally well at 20 and 25 C. The JAP strain grew slowest among the three strains at all temperatures, whereas the growth rate of the CHN and UK strains was similar at all temperatures except at 20 C. The UK strain contained the highest lipid content, but the CHN strain had the lowest lipid content at most temperatures. In the light trial, the highest growth rate was found in the UK strain and the lowest growth rate was observed in the JAP strain at most irradiances. The UK and JAP strains contained more lipids than the CHN strain at 60 and 100 W m−2, but the lipid content was not significantly different among the three strains at 300 W m−2. In the salinity trial, both the CHN and UK strains grew faster than the JAP strain at all salinities, but the growth rate between the CHN and UK strains was not different. However, the CHN strain had the lowest lipid content whereas the UK strain produced the highest lipids at most salinities. Our results indicate that the CHN strain and the UK strain grow faster than the JAP strain, but the UK and JAP strains produce more lipids than the CHN strain. The UK strain should be considered as a potential B. braunii strain for the exploitation of renewable energy.  相似文献   

17.
18.
During the course of some works on sugar metabolism in bacteria, we could find out bacteria having producibility of free d-ribose. Among 1395 strains isolated from soil, only nine strains were found to be able to produce aldopentose which was identified chromato-graphically as ribose. From cultured broth of Pseudomonas reptilivora S-1104, a representative strain among these nine strains, d-ribose was isolated in crystalline form as aldopentose. It was also found that ribose was formed not only from glucose but also from d-fructose, d-arabitol, gluconic acid, etc., and that d-fructose and a glucoside (remained unknown) were also accumulated at the same time in the culture broth of Pseudomonas reptilivora S-1104.  相似文献   

19.
Acidified glycerol pretreatment is very effective to deconstruct lignocellulosics for producing glucose. Co‐utilization of pretreated biomass and residual glycerol to bioproducts could reduce the costs associated with biomass wash and solvent recovery. In this study, a novel strain Rhodosporidium toruloides RP 15, isolated from sugarcane bagasse, was selected and tested for coconversion of pretreated biomass and residual glycerol to microbial oils. In the screening trails, Rh. toruloides RP 15 demonstrated the highest oil production capacity on glucose, xylose, and glycerol among the 10 strains. At the optimal C:N molar ratio of 140:1, this strain accumulated 56.7, 38.3, and 54.7% microbial oils based on dry cell biomass with 30 g/L glucose, xylose, and glycerol, respectively. Furthermore, sugarcane bagasse medium containing 32.6 g/L glucose from glycerol‐pretreated bagasse and 23.4 g/L glycerol from pretreatment hydrolysate were used to produce microbial oils by Rh. toruloides RP 15. Under the preliminary conditions without pH control, this strain produced 7.7 g/L oil with an oil content of 59.8%, which was comparable or better than those achieved with a synthetic medium. In addition, this strain also produced 3.5 mg/L carotenoid as a by‐product. It is expected that microbial oil production can be significantly improved through process optimization.  相似文献   

20.
Deschampsia antarctica Desv. is the only gramineae capable of colonizing the Antarctic due to the region’s extreme climate and soil environment. In the present research, bacteria colonizing the rhizospheric soil of D. antarctica were isolated and characterized. The soil studies showed that D. antarctica possesses a wide spectrum of psychrotolerant bacteria with extensive and varied antibiotic resistance, as well as heavy metal tolerance. The bacterial strains isolated from the rhizosphere of D. antarctica also produced a diverse pattern of enzymes. Based on the strain identification with partial characterization of the 16S rRNA gene, the majority of the isolates correspond to different Pseudomonas species, and species of the genus Flavobacterium sp. and Arthrobacter sp. The isolated strains collected from this research constitute a unique collection for future, more detailed taxonomic analysis and physiological characterization, contributing to the search for potential biotechnological uses. These findings and others have great potential for developing new biotechnological products from Antarctic microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号