首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic CO2 uptake rate and early growth parameters of radish Raphanus sativus L. seedlings exposed to an extremely low frequency magnetic field (ELF MF) were investigated. Radish seedlings were exposed to a 60 Hz, 50 microT(rms) (root mean square) sinusoidal magnetic field (MF) and a parallel 48 microT static MF for 6 or 15 d immediately after germination. Control seedlings were exposed to the ambient MF but not the ELF MF. The CO2 uptake rate of ELF MF exposed seedlings on day 5 and later was lower than that of the control seedlings. The dry weight and the cotyledon area of ELF MF exposed seedlings on day 6 and the fresh weight, the dry weight and the leaf area of ELF MF exposed seedlings on day 15 were significantly lower than those of the control seedlings, respectively. In another experiment, radish seedlings were grown without ELF MF exposure for 14 d immediately after germination, and then exposed to the ELF MF for about 2 h, and the photosynthetic CO2 uptake rate was measured during the short-term ELF MF exposure. The CO2 uptake rate of the same seedlings was subsequently measured in the ambient MF (control) without the ELF MF. There was no difference in the CO2 uptake rate of seedlings exposed to the ELF MF or the ambient MF. These results indicate that continuous exposure to 60 Hz, 50 microT(rms) sinusoidal MF with a parallel 48 microT static MF affects the early growth of radish seedlings, but the effect is not so severe that modification of photosynthetic CO2 uptake can observed during short-term MF exposure.  相似文献   

2.
The short-term polyamine response to inoculation, with tobacco mosaic virus (TMV), of TMV-inoculated NN (hypersensitive) and nn (susceptible) plants of Nicotiana tabacum (L.) cv. Samsun was investigated. Free and conjugated polyamine concentrations, putrescine biosynthesis, evaluated through arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) activities, and putrescine oxidation, via diamine oxidase (DAO) activity, were analysed during the first 24 h from inoculation. Results were compared with those of mock-inoculated control plants. In NN TMV-inoculated plants undergoing the hypersensitive response (HR), free putrescine and spermidine concentrations had increased after 5 h compared with controls; polyamine conjugates also tended to increase compared with controls. In both virus- and mock-inoculated plants, ADC and ODC activities generally increased whereas DAO activity, which was present in controls, was detectable only in traces in inoculated tissues.
In TMV-infected susceptible plants, free putrescine and spermidine concentrations were lower at 5 h relative to controls, as were polyamine conjugates. No differences were revealed in ADC and ODC activities whereas DAO activity was not detectable. These results further support the hypothesis that polyamines are involved in the response of tobacco to TMV and that, only a few hours after inoculation, the response of hypersensitive plants is distinct from that of susceptible ones.  相似文献   

3.
Ralstonia solanacearum 8107 (8107) is non-pathogenic to tobacco and elicits the hypersensitive response (HR). In Nicotiana tabacum cv. Samsun NN leaves infiltrated with 8107, acquired resistance to challenging tobacco mosaic virus (TMV) was induced 2-6 d after 8107-infiltration. hsr203J and hin1 genes were expressed only in the 8107-infiltrated area. On the other hand, the expression of PR-1a and PR-1b genes was not detected in the 8107-infiltrated area, but in areas other than that developing the HR. Expression of these PR-1 genes was regulated simultaneously and the kinetics of the expression was dependent on the distance from the infiltration area. Therefore, diffusible signal(s) might be produced in HR-causing cells and transmitted to peripheral cells resulting in expression of PR genes. In NahG10 tobacco infiltrated with 8107, the HR was induced but resistance to TMV was not. Analysis using NahG10 tobacco also showed that the salicylic acid (SA)-dependent signal regulated the expression of hsr203J and PR-1a, but not that of hin1 and PR-1b. These results suggest that resistance of tobacco to 8107 is SA-independent and involves a quite different mechanism from acquired resistance to TMV induced by 8107-infiltration which is SA-dependent.  相似文献   

4.
M. Kopp  P. Geoffroy  B. Fritig 《Planta》1979,146(4):451-457
Leaves of tobacco varieties carrying the N gene for hypersensitiviy react to tobacco mosaic virus (TMV) infection by forming necrotic lesions and by localizing the virus in the vicinity of these lesions. These changes are accompanied in the host by an increased metabolic activity, in particular by an increased production of phenolic compounds derived from phenylalanine. Necrogenesis apparently destroys cells which have become heavily infected despite this strong defense reaction. However, it has been demonstrated previously (Otsuki et al., 1972) that protoplasts derived from leaves which normally respond in vivo to virus inoculation by forming necrotic local lesions, show no such response when inoculated in vitro. In the present study we have investigated the effect of pre-infecting hypersensitive leaves with TMV on the production or the non-production of the factor(s) of necrosis at the level of either protoplasts or mesophyll cells isolated from these preinfected leaves. Phenylalanine ammonia-lyase (PAL), whose rate of synthesis has been shown (Duchesne et al., 1977) to increase in stimulated cells of infected leaves, was used as a biochemical marker in the search for the stimulus preceding necrogenesis. We found that this stimulus concerning PAL activity was never elicited in either protoplasts or mesophyll cells which were prepared just before the appearance of necrotic local lesions. This result did not depend on the conditions of pre-infection or on the methods used to isolate the protoplasts or mesophyll cells. We also assayed samples derived from pre-infected leaves that were already carrying local lesions, i.e., in which the stimulus and necrogenesis were already operating: not only did the isolated protoplasts and mesophyll cells not sustain the stimulus concerning PAL activity, but the stimulated enzyme activity decreased abruptly and, in most of the experiments, had disappeared within the time necessary for maceration. Evidence is presented showing that the non-elicitation or the abrupt decrease of stimulated PAL activity could not result from a selection of unstimulated cells or from a preferential destruction of stimulated cells during maceration of the leaves.Our results support the view that hypertonic osmotic pressure is responsible for the non-occurence of the hypersensitive response by acting according to one or both of the following processes: it suppresses the contacts through plasmodesmata between neighboring cells and, hence, it also suppresses the cell-to-cell diffusion of the factor(s) eliciting the stimulus; and/or since hypertonic osmotic pressure causes striking differences between leaf cells and protoplasts in total RNA and protein synthesis, these differences might include the suppression of synthesis of the elicitor of hypersensitivity.Abbreviations OMT O-methyltransferase - PAL phenylalanine ammonia-lyase - TMV Tobacco mosaic virus  相似文献   

5.
Extremely low frequency (ELF) magnetic fields (MFs) were measured at 696 points in a room of a Japanese apartment building. The building had 124 rooms with layouts and wiring identical to those of the studied room. ELF-MFs exceeded 0.4 microT in 24% of the living space, and the maximum value, 1.8 microT, was detected at floor level. Analysis of the MF distribution revealed that 60 Hz 100 V electrical wiring for room lights within the floor and ceiling had been laid out in large rectangles, equivalent to 1 turn coils. Further plotting of the vertical components every 0.01 m on the floor indicated that the depth of the cable was 0.23 m. Further studies should be conducted in order to confirm that the building investigated in this pilot study is typical of Japanese apartment buildings in terms of ELF-MFs.  相似文献   

6.
7.
8.
Tobacco mosaic virus (TMV) induces the hypersensitive response (HR) in tobacco plants containing the N gene. This defence response is characterized by cell death at the site of virus infection and inhibition of viral replication and movement. A previous study indicated that a portion of the TMV replicase containing a putative helicase domain is involved in HR induction. Here, this observation is confirmed and extended by showing that non-viral expression of a 50 kDa TMV helicase fragment (p50) is sufficient to induce the N-mediated HR in tobacco. Like the HR elicited by TMV infection, transgenic expression of p50 induces a temperature-sensitive defence response. We demonstrate that recombinant p50 protein has ATPase activity, as suggested by the presence of conserved sequence motifs found in ATPase/helicase enzymes. A point mutation that alters one of these motifs abolishes ATPase activity in vitro but does not affect HR induction. These results suggest that features of the TMV helicase domain, independent of its enzymatic activity, are recognized by N-containing tobacco to induce TMV resistance.  相似文献   

9.
Cloning of tobacco genes that elicit the hypersensitive response   总被引:7,自引:0,他引:7  
  相似文献   

10.
The activity of ornithine decarboxylase (ODC) is increased 20 fold in leaves of Nicotiana tabacum cv. Xanthi n.c. following infection with tobacco mosaic virus at 20°. The activity reaches its maximum when localized necrotic lesions appear. There is little or no increase in plants kept at 32° when infection is systemic. However, if the infected plants are transferred to 20°, a marked and rapid increase in ODC activity occurs in the upper leaves, which collapse seven to nine hours after the transfer. ODC activity therefore parallels the activity of phenylalanine ammonia lyase during the hypersensitive reaction. Tyrosine decarboxylase was found to be activated in the same conditions. By contrast no increase in arginine decarboxylase activity could be detected. Temperature has a much greater effect on the polyamine and tyramine content of Xanthi n.c. leaves than does infection with TMV.  相似文献   

11.
The response of tobacco (Nicotiana tabacum L. cv. Xanthinc) plants, epigenetically suppressed for phenylalanine ammonia-lyase (PAL) activity, was studied following infection by tobacco mosaic virus (TMV). These plants contain a bean PAL2 transgene in the sense orientation, and have reduced endogenous tobacco PAL mRNA and suppressed production of phenylpropanoid products. Lesions induced by TMV infection of PAL-suppressed plants are markedly different in appearance from those induced on control plants that have lost the bean transgene through segregation, with a reduced deposition of phenofics. However, they develop at the same rate as on control tobacco, and pathogenesis-related (PR) proteins are induced normally upon primary infection. The levels of free salicylic acid (SA) produced in primary inoculated leaves of PAL-suppressed plants are approximately fourfold lower than in control plants after 84 h, and a similar reduction is observed in systemic leaves. PR proteins are not induced in systemic leaves of PAL-suppressed plants, and secondary infection with TMV does not result in the restriction of lesion size and number seen in control plants undergoing systemic acquired resistance (SAR). In grafting experiments between wild-type and PAL-suppressed tobacco, the SAR response can be transmitted from a PAL-suppressed root-stock, but SAR is not observed if the scion is PAL-suppressed. This indicates that, even if SA is the systemic signal for establishment of SAR, the amount of pre-existing phenylpropanoid compounds in systemic leaves, or the ability to synthesize further phenylpropanoids in response to the systemic signal, may be important for the establishment of SAR. Treatment of PAL-suppressed plants with dichloro-isonicotinic acid (INA) induces PR protein expression and SAR against subsequent TMV infection. However, treatment with SA, while inducing PR proteins, only partially restores SAR, further suggesting that de novo synthesis of SA, and/or the presence or synthesis of other phenylpropanoids, is required for expression of resistance in systemic leaves.  相似文献   

12.
Tobacco plants over-expressing L-phenylalanine ammonia-lyase (PAL(+)) produce high levels of chlorogenic acid (CGA) and exhibit markedly reduced susceptibility to infection with the fungal pathogen Cercospora nicotianae, although their resistance to tobacco mosaic virus (TMV) is unchanged. Levels of the signal molecule salicylic acid (SA) were similar in uninfected PAL(+) and control plants and also following TMV infection. In crosses of PAL(+) tobacco with tobacco harboring the bacterial NahG salicylate hydroxylase gene, progeny harboring both transgenes lost resistance to TMV, indicating that SA is critical for resistance to TMV and that increased production of phenylpropanoid compounds such as CGA cannot substitute for the reduction in SA levels. In contrast, PAL(+)/NahG plants showed strongly reduced susceptibility to Cercospora nicotianae compared to the NahG parent line. These results are consistent with a recent report questioning the role of PAL in SA biosynthesis in Arabidopsis, and highlight the importance of phenylpropanoid compounds such as CGA in plant disease resistance.  相似文献   

13.
The aim of the work was verification of the hypothesis that weak power frequency (50 Hz) magnetic fields (MF) affected the number of free oxygen radicals in living biological cells and that these changes could be qualitatively explained by the radical pair mechanism. The experiments were performed on rat lymphocytes. One-hour exposure to 50 Hz MF at 20, 40, or 200 microT flux densities was performed inside a pair of Helmholtz coils with axis along or crosswise to the Earth's static MF. Iron ions (FeCl2) were used as a stimulator of the oxidation processes. Oxygen radicals were measured by fluorimetry using a DCF-DA fluorescent probe. Only in the lymphocytes exposed at 40 microT MF directed along the Earth's static MF there was a decrease of fluorescence in relation to non-exposed samples. Our observation seems to confirm the hypothesis that low level power frequency MF affects oxidative processes which occur in living biological cells and that this effect can be explained by the radical pair mechanism.  相似文献   

14.
Systemic induction of pathogenesis-related (PR) proteins in tobacco, which occurs during the hypersensitive response to tobacco mosaic virus (TMV), may be caused by a minimum 10-fold systemic increase in endogenous levels of salicylic acid (SA). This rise in SA parallels PR-1 protein induction and occurs in TMV-resistant Xanthi-nc tobacco carrying the N gene, but not in TMV-susceptible (nn) tobacco. By feeding SA to excised leaves of Xanthi-nc (NN) tobacco, we have shown that the observed increase in endogenous SA levels is sufficient for the systemic induction of PR-1 proteins. TMV infection became systemic and Xanthi-nc plants failed to accumulate PR-1 proteins at 32 degrees C. This loss of hypersensitive response at high temperature was associated with an inability to accumulate SA. However, spraying leaves with SA induced PR-1 proteins at both 24 and 32 degrees C. SA is most likely exported from the primary site of infection to the uninfected tissues. A computer model predicts that SA should move rapidly in phloem. When leaves of Xanthi-nc tobacco were excised 24 hr after TMV inoculation and exudates from the cut petioles were collected, the increase in endogenous SA in TMV-inoculated leaves paralleled SA levels in exudates. Exudation and leaf accumulation of SA were proportional to TMV concentration and were higher in light than in darkness. Different components of TMV were compared for their ability to induce SA accumulation and exudation: three different aggregation states of coat protein failed to induce SA, but unencapsidated viral RNA elicited SA accumulation in leaves and phloem. These results further support the hypothesis that SA acts as an endogenous signal that triggers local and systemic induction of PR-1 proteins and, possibly, some components of systemic acquired resistance in NN tobacco.  相似文献   

15.
During the hypersensitive response (HR), plants accumulate reactive oxygen species (ROS) that are likely generated at least in part by an NADPH oxidase similar to that found in mammalian neutrophils. An essential regulator of mammalian NADPH oxidase is the small GTP-binding protein Rac. To investigate whether Rac also regulates the pathogen-induced oxidative burst in plants, a dominant negative form of the rice OsRac1 gene was overexpressed in tobacco carrying the N resistance gene. Following infection with Tobacco mosaic virus (TMV), DN-OsRacl plants developed smaller lesions than wild-type plants, accumulated lower levels of lipid peroxidation products, and failed to activate expression of antioxidant genes. These results, combined with the demonstration that superoxide and hydrogen peroxide levels were reduced in DN-OsRacl tobacco developing a synchronous HR triggered by transient expression of the TMV p50 helicase domain or the Pto and AvrPto proteins, suggest that ROS production is impaired. The dominant negative effect of DN-OsRacl could be rescued by transiently overexpressing the wild-type OsRac1 protein. TMV-induced salicylic acid accumulation also was compromised in DN-OsRacl tobacco. Interestingly, while systemic acquired resistance to TMV was not impaired, nonhost resistance to Pseudomonas syringae pv. maculicola ES4326 was suppressed. Thus, the effect DN-OsRac1 expression exerts on the resistance signaling pathway appears to vary depending on the identity of the inoculated pathogen.  相似文献   

16.
In a series of experiments with the chemical carcinogen DMBA (7, 12-dimethyl[a]anthracene), we recently found that exposure of female Sprague-Dawley rats in 50 Hz magnetic fields (MF) in the microtesla range significantly facilitates the development and growth of mammary tumors. One possible explanation for this finding would be enhanced proliferation of breast epithelial stem cells by MF exposure, thereby increasing the sensitivity of these cells to chemical carcinogens. In line with this possibility, we previously determined that 50 Hz, 50 microT MF exposure induces increases in ornithine decarboxylase (ODC), i.e., a key enzyme in cell proliferation, in the mammary gland of female Sprague-Dawley rats. In the present study, we examined the time course of this effect, by using different periods of exposure to a 50 Hz, 100 microT MF. Furthermore, we determined ODC in different mammary complexes of the rat mammary gland to evaluate whether differences in response to MF exist over the anterior-posterior extension of this organ. Exposure of young female Sprague-Dawley rats induced marked increases in ODC in the mammary gland that were similar to ODC increases seen in "positive control" experiments with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). However, this effect of MF critically depended on the duration of MF exposure, with no effect, or at least no consistent effect, for short (<1 week) or long (8 weeks and above) exposure periods, but a robust and reproducible enhancing effect on ODC activity after 2 weeks of exposure. Furthermore, we found that the effect of MF exposure depends on the part of the mammary complexes examined, the cranial thoracic (or cervical) complexes being particularly sensitive to ODC alterations in response to MF. This is in line with recent DMBA experiments of our group in which MF-induced increases in tumor development and growth were predominantly seen in this large cranial/cervical part of the mammary gland. The most likely explanation for the observed ODC changes after MF exposure is the "melatonin hypothesis," although other cellular and molecular effects of MF might be involved as well.  相似文献   

17.
The hypersensitive interaction between Tobacco mosaic virus (TMV) and tobacco results in accumulation of salicylic acid (SA), defense gene expression, and development of systemic acquired resistance (SAR) in uninfected leaves. The plant hormones SA and ethylene have been implicated in SAR. From a study with ethylene-insensitive (Tetr) tobacco, we concluded that ethylene perception is required to generate the systemic signal molecules in TMV-infected leaves that trigger SA accumulation, defense gene expression, and SAR development in uninfected leaves. Ethylene perception was not required for the responses of the plant to the systemic signal that leads to SAR development.  相似文献   

18.
Salicylic acid (SA) plays important roles in plants, most notably in the induction of systemic acquired resistance (SAR) against pathogens. A non-destructive in situ assay for SA would provide new insights into the functions of SA in SAR and other SA-regulated phenomena. We assessed a genetically engineered strain of Acinetobacter sp. ADP1, which proportionally produces bioluminescence in response to salicylates including SA and methylsalicylate, as a reporter for salicylate accumulation in the apoplast of plant leaves. SA was measured quantitatively in situ in NN genotype tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaves inoculated with tobacco mosaic virus (TMV). The biosensor revealed accumulation of apoplastic SA before the visible appearance of hypersensitive response (HR) lesions. When the biosensor was infiltrated into TMV-inoculated leaves displaying HR lesions at 90 and 168 h post-inoculation, salicylate accumulation was detected predominantly in tissues surrounding the lesions and in veins adjacent to HR lesions. These images are consistent with previous data demonstrating that SA accumulation occurs prior to and following the onset of visible HR lesions. We also used the biosensor to observe apoplastic SA accumulation in tobacco leaves inoculated with virulent and HR-eliciting strains of the bacterial plant pathogen Pseudomonas syringae. The work demonstrates that the Acinetobacter sp. ADP1 biosensor is a useful new tool to non-destructively assay salicylates in situ and to map their spatial distribution in plant tissues.  相似文献   

19.
Salicylic acid (SA) mediates plant response to pathogen invasion, resulting in hypersensitive response and in the formation of systemic acquired resistance. It is well known that Nicotiana tabacum and other plants respond to Tobacco Mosaic Virus (TMV) infection by increasing the content of SA but the details of SA biosynthesis are still not fully understood. Generally, SA may originate directly from isochorismate ( Arabidopsis thaliana ), or its C6–C1 skeleton could be synthesized via the phenylpropanoid pathway by β-oxidation of trans -cinnamic acid ( N. tabacum ), 2-coumaric acid (OCA) ( Gaulteria procumbens , Lycopersicum esculentum ) or by retro-aldol reaction of trans -cinnamoyl-CoA ( Hypericum androsaemum ). We report here a novel putative enzyme activity from tobacco, salicylic aldehyde synthase (SAS), catalysing non-oxidative formation of salicylic aldehyde (SALD) directly from OCA. This chain-shortening activity is similar to that of 4-hydroxybenzaldehyde synthase from Vanilla planifolia , Lithospermum erythrorhizon , Daucus carota , Solanum tuberosum and Polyporus hispidus but the enzyme differs in the kinetics of the reaction, substrate specificity and requirements for reducing cofactors. SAS activity is constitutively expressed in healthy tobacco leaves and doubles as a result of infection with TMV. Moreover, the product of SAS activity—SALD, applied exogenously on tobacco leaves, stimulates peroxidase activity and enhances resistance to consecutive infection with TMV. These observations could suggest a contribution of SAS and SALD to the response of tobacco to TMV infection.  相似文献   

20.
Zhang W  Yang X  Qiu D  Guo L  Zeng H  Mao J  Gao Q 《Molecular biology reports》2011,38(4):2549-2556
Systemic acquired resistance (SAR) is an inducible defense mechanism which plays a central role in protecting plants from pathogen attack. A new elicitor, PeaT1 from Alternaria tenuissima, was expressed in Escherichia coil and characterized with systemic acquired resistance to tobacco mosaic virus (TMV). PeaT1-treated plants exhibited enhanced systemic resistance with a significant reduction in number and size of TMV lesions on wild tobacco leaves as compared with control. The quantitative analysis of TMV CP gene expression with real-time quantitative PCR showed there was reduction in TMV virus concentration after PeaT1 treatment. Similarly, peroxidase (POD) activity and lignin increased significantly after PeaT1 treatment. The real-time quantitative PCR revealed that PeaT1 also induced the systemic accumulation of pathogenesis-related gene, PR-1a and PR-1b which are the markers of systemic acquired resistance (SAR), NPR1 gene for salicylic acid (SA) signal transduction pathway and PAL gene for SA synthesis. The accumulation of SA and the failure in development of similar level of resistance as in wild type tobacco plants in PeaT1 treated nahG transgenic tobacco plants indicated that PeaT1-induced resistance depended on SA accumulation. The present work suggested that the molecular mechanism of PeaT1 inducing disease resistance in tobacco was likely through the systemic acquired resistance pathway mediated by salicylic acid and the NPR1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号