首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retrovirus-like sequences and their solitary (solo) long terminal repeats (LTRs) are common repetitive elements in eukaryotic genomes. We reported previously that the tandemly arrayed genes encoding U2 snRNA (the RNU2 locus) in humans and apes contain a solo LTR (U2-LTR) which was presumably generated by homologous recombination between the two LTRs of an ancestral provirus that is retained in the orthologous baboon RNU2 locus. We have now sequenced the orthologous U2-LTRs in human, chimpanzee, gorilla, orangutan, and baboon and examined numerous homologs of the U2-LTR that are dispersed throughout the human genome. Although these U2-LTR homologs have been collectively referred to as LTR13 in the literature, they do not display sequence similarity to any known retroviral LTRs; however, the structure of LTR13 closely resembles that of other retroviral LTRs with a putative promoter, polyadenylation signal, and a tandemly repeated 53-bp enhancer-like element. Genomic blotting indicates that LTR13 is primate-specific; based on sequence analysis, we estimate there are about 2,500 LTR13 elements in the human genome. Comparison of the primate U2-LTR sequences suggests that the homologous recombination event that gave rise to the solo U2-LTR occurred soon after insertion of the ancestral provirus into the ancestral U2 tandem array. Phylogenetic analysis of the LTR13 family confirms that it is diverse, but the orthologous U2-LTRs form a coherent group in which chimpanzee is closest to the humans; orangutan is a clear outgroup of human, chimpanzee, and gorilla; and baboon is a distant relative of human, chimpanzee, gorilla, and orangutan. We compare the LTR13 family with other known LTRs and consider whether these LTRs might play a role in concerted evolution of the primate RNU2 locus. Received: 29 September 1997 / Accepted: 16 January 1998  相似文献   

2.
在水稻第四号染色体的长臂上鉴定了一个结构完整的Ty3型逆转录转座子RIRE10。RIRE10两LTR间的中间区域在gag pol的上游还包含另一个开放阅读框。通过RT PCR与Northern印迹杂交检测到来自LTR区的转录产物 ;根据点杂交结果 ,鉴定出包含中间区域的RIRE10成员的个数以及LTR区的拷贝数。除了 6 5个完整的逆转录转座子所具备的两个LTR外 ,水稻基因组还含有近 90 0个RIRE10的solo LTR。LTR区的转录以及导致solo LTR产生的同源重组可能影响了RIRE10成员在水稻基因组中的转座活性  相似文献   

3.
In primates, the tandemly repeated genes encoding U2 small nuclear RNA evolve concertedly, i.e. the sequence of the U2 repeat unit is essentially homogeneous within each species but differs somewhat between species. Using chromosome painting and the NGFR gene as an outside marker, we show that the U2 tandem array (RNU2) has remained at the same chromosomal locus (equivalent to human 17q21) through multiple speciation events over > 35 million years leading to the Old World monkey and hominoid lineages. The data suggest that the U2 tandem repeat, once established in the primate lineage, contained sequence elements favoring perpetuation and concerted evolution of the array in situ, despite a pericentric inversion in chimpanzee, a reciprocal translocation in gorilla and a paracentric inversion in orang utan. Comparison of the 11 kb U2 repeat unit found in baboon and other Old World monkeys with the 6 kb U2 repeat unit in humans and other hominids revealed that an ancestral U2 repeat unit was expanded by insertion of a 5 kb retrovirus bearing 1 kb long terminal repeats (LTRs). Subsequent excision of the provirus by homologous recombination between the LTRs generated a 6 kb U2 repeat unit containing a solo LTR. Remarkably, both junctions between the human U2 tandem array and flanking chromosomal DNA at 17q21 fall within the solo LTR sequence, suggesting a role for the LTR in the origin or maintenance of the primate U2 array.  相似文献   

4.
N. Ke  D. F. Voytas 《Genetics》1997,147(2):545-556
Retroelement cDNA can integrate into the genome using the element-encoded integrase, or it can recombine with preexisting elements using the recombination system of the host. Recombination is a particularly important pathway for the yeast retrotransposon Ty5 and accounts for ~30% of the putative transposition events when a homologous substrate is carried on a plasmid and ~7% when the substrate is located at the chromosomal URA3 locus. Characterization of recombinants revealed that they are either simple replacements of the marker gene or tandem elements. Using an assay system in which the donor element and recombination substrates are separated, we found that the long terminal repeats (LTRs) are critical for tandem element formation. LTR-containing substrates generate tandem elements at frequencies more than 10-fold higher than similarly sized internal Ty5 sequences. Internal sequences, however, facilitate tandem element formation when associated with an LTR, and there is a linear relationship between frequencies of tandem element formation and the length of LTR-containing substrates. We propose that recombination is initiated between the LTRs of the cDNA and substrate and that internal sequences promote tandem element formation by facilitating sequence alignment. Because of its location in subtelomeric regions, recombinational amplification of Ty5 may contribute to the organization of chromosome ends.  相似文献   

5.
The classification of the long terminal repeats (LTRs) of the human endogenous retrovirus HERV-K (HML-2) family was refined according to diagnostic differences between the LTR sequences. The mutation rate was estimated to be approximately equal for LTRs belonging to different families and branches of human endogenous retroviruses (HERVs). An average mutation rate value was calculated based on differences between LTRs of the same HERV and was found to be 0.13% per million years (Myr). Using this value, the ages of different LTR groups belonging to the LTR HML-2 subfamily were found to vary from 3 to 50Myr. Orthologous potential LTR-containing loci from different primate species were PCR amplified using primers corresponding to the genomic sequences flanking LTR integration sites. This allowed us to calculate the phylogenetic times of LTR integrations in primate lineages in the course of the evolution and to demonstrate that they are in good agreement with the LTR ages calculated from the mutation rates. Human-specific integrations for some very young LTRs were demonstrated. The possibility of LTRs and HERVs involvement in the evolution of primates is discussed.  相似文献   

6.
7.
8.
Dvorak J  Akhunov ED 《Genetics》2005,171(1):323-332
The origin of tetraploid wheat and the divergence of diploid ancestors of wheat A and D genomes were estimated to have occurred 0.36 and 2.7 million years ago, respectively. These estimates and the evolutionary history of 3159 gene loci were used to estimate the rates with which gene loci have been deleted and duplicated during the evolution of wheat diploid ancestors and during the evolution of polyploid wheat. During diploid evolution, the deletion rate was 2.1 x 10(-3) locus(-1) MY(-1) for single-copy loci and 1.0 x 10(-2) locus(-1) MY(-1) for loci in paralogous sets. Loci were duplicated with a rate of 2.9 x 10(-3) locus(-1) MY(-1) during diploid evolution. During polyploid evolution, locus deletion and locus duplication rates were 1.8 x 10(-2) and 1.8 x 10(-3) locus(-1) MY(-1), respectively. Locus deletion and duplication rates correlated positively with the distance of the locus from the centromere and the recombination rate during diploid evolution. The functions of deleted and duplicated loci were inferred to gain insight into the surprisingly high rate of deletions of loci present apparently only once in a genome. The significance of these findings for genome evolution at the diploid and polyploid level is discussed.  相似文献   

9.
The RTVL-H family of human endogenous retrovirus-like elements consists of approximately 1,000 intact members and of a similar number of solitary long terminal repeats (LTRs). In this study, the genetic heterogeneity of these elements has been investigated using unique flanking probes isolated from cDNA clones containing RTVL-H sequences. Four such probes were used to screen a panel of human DNA samples for genetic differences. One of these probes detected a 5.0-kb deletion in two related individuals. Cloning and DNA hybridization analysis indicated that the nondeleted common allele contained an intact RTVL-H element, whereas the deleted variant allele contained only a single LTR. DNA sequence comparisons strongly suggest that the deletion is due to homologous recombination between the 5' and 3' LTRs of the RTVL-H sequence. This is the first reported case of a DNA variation in humans that is due to an LTR-LTR excision event.  相似文献   

10.
A locus harboring a human endogenous retroviral LTR (long terminal repeat) was mapped on the short arm of human chromosome 7 (7p22), and its evolutionary history was investigated. Sequences of two human genome fragments that were homologous to the LTR-flanking sequences were found in human genome databases: (1) an LTR-containing DNA fragment from region 3p13 of the human genome, which includes clusters of olfactory receptor genes and pseudogenes; and (2) a fragment of region 21q22.1 lacking LTR sequences. PCR analysis demonstrated that LTRs with highly homologous flanking sequences could be found in the genomes of human, chimp, gorilla, and orangutan, but were absent from the genomes of gibbon and New World monkeys. A PCR assay with a primer set corresponding to the sequence from human Chr 3 allowed us to detect LTR-containing paralogous sequences on human chromosomes 3, 4, 7, and 11. The divergence times for the LTR-flanking sequences on chromosomes 3 and 7, and the paralogous sequence on chromosome 21, were evaluated and used to reconstruct the order of duplication events and retroviral insertions. (1) An initial duplication event that occurred 14-17 Mya and before LTR insertion - produced two loci, one corresponding to that located on Chr 21, while the second was the ancestor of the loci on chromosomes 3 and 7. (2) Insertion of the LTR (most probably as a provirus) into this ancestral locus took place 13 Mya. (3) Duplication of the LTR-containing ancestral locus occurred 11 Mya, forming the paralogous modern loci on Chr 3 and 7.  相似文献   

11.
To investigate the mechanism by which the polyomavirus large T antigen (T-Ag) promotes amplification of integrated viral sequences, we constructed a rat cell line, Hy2-ts5, carrying two different inserts of polyomavirus DNA. The first insert, designated the middle T (pmt) locus, was devised to analyze homologous recombination between two defective copies of pmt lying 3.3 kb apart on the same chromosome. Reconstitution of a functional pmt by spontaneous recombination occurred at a rate of about 2 x 10(-7) per cell generation. The second locus contained the polyomavirus large T (plt) gene carrying a temperature-sensitive mutation and producing a nonfunctional large T-Ag at 39 degrees C. A shift to the permissive temperature for as little as 24 h induced the production of a functional large T-Ag which, in turn, promoted homologous recombination in the pmt locus at a rate close to 1.0 per cell generation. The particularity of this system is that it allowed recombination products to be analyzed as early as a single cell doubling following the initial recombinational event. Amplification occurred by successive duplications of a discrete sequence in the viral insert. Unequal sister chromatid exchange was ruled out as the recombination mechanism promoted by large T-Ag. Instead, we proposed a model of nonconservative recombination involving mispairing between homologous sequences.  相似文献   

12.
13.
14.
The nptII(+) gene present in the genome of transgenic potato plants transforms naturally competent cells of the soil bacteria Pseudomonas stutzeri and Acinetobacter BD413 (both harboring a plasmid with an nptII gene containing a small deletion) with the same high efficiency as nptII(+) genes on plasmid DNA (3x10(-5)-1x10(-4) transformants per nptII(+)) despite the presence of a more than 10(6)-fold excess of plant DNA. However, in the absence of homologous sequences in the recipient cells the transformation by nptII(+) dropped by at least about 10(8)-fold in P. stutzeri and 10(9)-fold in Acinetobacter resulting in the latter strain in < or =1x10(-13) transformants per nptII(+). This indicated a very low probability of non-homologous DNA fragments to be integrated by illegitimate recombination events during transformation.  相似文献   

15.
在水稻4号染色体两个BAC克隆序列分析中,发现了两个solo-LTR,分别命名为SLTR1和SLTR2。它们分别位于水稻18S rRNA基因和一逆转座子内部。序列比较发现,SLTR1和SLTR2存在着较高的同源性,并与水稻逆转座子RIRE8的LTR序列高度同源,分别为89.1%和70.1%。它们属于一类水稻gypsy类型逆转座子。利用SLTR1和SLTR2与水稻DNA杂交,结果显示两者广泛分布于水稻基因组中,是一类高拷贝重复序列。分别利用SLTR1和SLTR2的两侧特异性序列设计引物进行PCR扩增,结果发现在基因组的相应位置并不存在SLTR1或SLTR2;利用它们两侧被打断基因的特异性片段杂交基因组DNA,得到了同样的结果。这意味着SLTR1和SLTR2来源于基因组的其它位置,并通过某种转座的过程进入18S rRNA基因和另一逆转座子内部。Solo-LTR存在着这种潜在的转座活性,对于进一步研究solo-LTR的来源以及其在基因组进货和基因的表达调控中具有一定的意义。  相似文献   

16.
Cryptococcosis is a major threat to immunocompromised individuals. Isolates of Cryptococcus neoformans var. grubii and var. neoformans are responsible for most of the infections in the United States and Europe. In depth analysis of the virulence phenotype of this organism requires the generation of specific gene disruptions. The minimum sequence requirements for efficient homologous recombination has not been determined in Cryptococcus. To investigate the flanking DNA length requirements for efficient homologous recombination in variety grubii, the rates of homologous recombination of constructs with different lengths of flanking sequence at two loci, CAP59 and CNLAC1, were examined. Five gene disruption constructs were prepared for each locus with symmetric lengths of sequence homologous to the target gene with approximately 50, 100, 200, 300 or 400bp flanking the selectable marker for hygromycin resistance. In addition, two asymmetric constructs with 50bp on one side and 400bp on the other side were generated for each locus. Overall, symmetric constructs with 300bp or more of flanking sequence on each side and the asymmetric constructs were efficiently targeted for gene disruption by homologous recombination in C. neoformans var. grubii. With one exception, the rate of recovery of homologous recombinants using the longer or asymmetric constructs as targeting vectors was greater than five percent of total transformants. Symmetrical constructs with 100bp or less of homologous flanking sequence did not efficiently generate targeted gene disruptions because the rate of homologous recombinants was less than or equal to 1%.  相似文献   

17.
The polymorphism at the multitude of loci adjacent to human endogenous retrovirus long terminal repeats (LTRs) was analyzed by a technique for whole genome differential display based on the PCR suppression effect that provides selective amplification and display of genomic sequences flanking interspersed repeated elements. This strategy is simple, target-specific, requires a small amount of DNA and provides reproducible and highly informative data. The average frequency of polymorphism observed in the vicinity of the LTR insertion sites was found to be about 12%. The high incidence of polymorphism within the LTR flanks together with the frequent location of LTRs near genes makes the LTR loci a useful source of polymorphic markers for gene mapping.  相似文献   

18.
Long terminal repeat (LTR) retrotransposons are the major DNA components of flowering plants. They are generally enriched in pericentromeric heterochromatin regions of their host genomes, which could result from the preferential insertion of LTR retrotransposons and the low effectiveness of purifying selection in these regions. To estimate the relative importance of the actions of these two factors on their distribution pattern, the LTR retrotransposons in Solanum lycopersicum (tomato) plants were characterized at the genome level, and then the distribution of young elements was compared with that of relatively old elements. The current data show that old elements are mainly located in recombination‐suppressed heterochromatin regions, and that young elements are preferentially located in the gene‐rich euchromatic regions. Further analysis showed a negative correlation between the insertion time of LTR retrotransposons and the recombination rate. The data also showed there to be more solo LTRs in genic regions than in intergenic regions or in regions close to genes. These observations indicate that, unlike in many other plant genomes, the current LTR retrotransposons in tomatoes have a tendency to be preferentially located into euchromatic regions, probably caused by their severe suppression of activities in heterochromatic regions. These elements are apt to be maintained in heterochromatin regions, probably as a consequence of the pericentromeric effect in tomatoes. These results also indicate that local recombination rates and intensities of purifying selection in different genomic regions are largely responsible for structural variation and non‐random distribution of LTR retrotransposons in tomato plants.  相似文献   

19.
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号