首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There are many more selectively constrained noncoding than coding nucleotides in the mammalian genome, but most mammalian noncoding DNA is subject to weak selection, on average. One of the most striking discoveries to have emerged from comparisons among mammalian genomes is the hundreds of noncoding elements of more than 200 bp in length that show absolute conservation among mammalian orders. These elements represent the tip of the iceberg of a much larger class of conserved noncoding elements (CNEs). Much evidence suggests that CNEs are selectively constrained and not mutational cold-spots, and there is evidence that some CNEs play a role in the regulation of development. Here, we quantify negative and positive selection acting in murine CNEs by analyzing within-species nucleotide variation and between-species divergence of CNEs that we identified using a phylogenetically independent comparison. The distribution of fitness effects of new mutations in CNEs, inferred from within-species polymorphism, suggests that CNEs receive a higher number of strongly selected deleterious mutations and many fewer nearly neutral mutations than amino acid sites of protein-coding genes or regulatory elements close to genes. However, we also show that CNEs experience a far higher proportion of adaptive substitutions than any known category of genomic sites in murids. The absolute rate of adaptation of CNEs is similar to that of amino acid sites of proteins. This result suggests that there is widespread adaptation in mammalian conserved noncoding DNA elements, some of which have been implicated in the regulation of crucially important processes, including development.  相似文献   

2.
Small ribozymes have been regarded as living fossils of a prebiotic RNA world that would have remained in the genomes of modern organisms. In this study, we report the ultraconserved occurrence of hammerhead ribozymes in Amniota genomes (reptiles, birds and mammals, including humans), similar to those described previously in amphibians and platyhelminth parasites. The ribozymes mapped to intronic regions of different genes, such as the tumour suppressor RECK in birds and mammals, a mammalian tumour antigen and the dystrobrevin beta in lizards and birds. In vitro characterization confirmed a high self-cleavage activity, whereas analysis of RECK-expressed sequence tags revealed fusion events between the in vivo self-cleaved intron and U5 or U6 small nuclear RNA fragments. Together, these results suggest a conserved role for these ribozymes in messenger RNA biogenesis.  相似文献   

3.
Genomic DNA is often thought of as the stable template of heredity, largely dormant and unchanging, apart from perhaps the occasional point mutation. But it has become increasingly clear that DNA is dynamic rather than static, being subjected to rearrangements, insertions and deletions. Much of this plasticity can be attributed to transposable elements and their genomic relatives.  相似文献   

4.
Deletion of ultraconserved elements yields viable mice   总被引:1,自引:0,他引:1       下载免费PDF全文
Ultraconserved elements have been suggested to retain extended perfect sequence identity between the human, mouse, and rat genomes due to essential functional properties. To investigate the necessities of these elements in vivo, we removed four noncoding ultraconserved elements (ranging in length from 222 to 731 base pairs) from the mouse genome. To maximize the likelihood of observing a phenotype, we chose to delete elements that function as enhancers in a mouse transgenic assay and that are near genes that exhibit marked phenotypes both when completely inactivated in the mouse and when their expression is altered due to other genomic modifications. Remarkably, all four resulting lines of mice lacking these ultraconserved elements were viable and fertile, and failed to reveal any critical abnormalities when assayed for a variety of phenotypes including growth, longevity, pathology, and metabolism. In addition, more targeted screens, informed by the abnormalities observed in mice in which genes in proximity to the investigated elements had been altered, also failed to reveal notable abnormalities. These results, while not inclusive of all the possible phenotypic impact of the deleted sequences, indicate that extreme sequence constraint does not necessarily reflect crucial functions required for viability.  相似文献   

5.
Amidst the rapid advancement in next‐generation sequencing (NGS) technology over the last few years, salamanders have been left behind. Salamanders have enormous genomes—up to 40 times the size of the human genome—and this poses challenges to generating NGS data sets of quality and quantity similar to those of other vertebrates. However, optimization of laboratory protocols is time‐consuming and often cost prohibitive, and continued omission of salamanders from novel phylogeographic research is detrimental to species facing decline. Here, we use a salamander endemic to the southeastern United States, Plethodon serratus, to test the utility of an established protocol for sequence capture of ultraconserved elements (UCEs) in resolving intraspecific phylogeographic relationships and delimiting cryptic species. Without modifying the standard laboratory protocol, we generated a data set consisting of over 600 million reads for 85 P. serratus samples. Species delimitation analyses support recognition of seven species within P. serratus sensu lato, and all phylogenetic relationships among the seven species are fully resolved under a coalescent model. Results also corroborate previous data suggesting nonmonophyly of the Ouachita and Louisiana regions. Our results demonstrate that established UCE protocols can successfully be used in phylogeographic studies of salamander species, providing a powerful tool for future research on evolutionary history of amphibians and other organisms with large genomes.  相似文献   

6.
田靖  赵志虎  陈惠鹏 《遗传》2009,31(11):1067-1076
比较基因组学的研究发现: 人类基因组中约5%的序列受到选择压力的限制, 但编码序列只占其中很小一部分, 约3.5%是保守、非编码序列。这些保守非编码元件具有重要功能。可能在染色质构型(高级结构)、DNA转录和RNA加工等不同水平参与了基因的表达调控, 与哺乳动物的形态发生和人类疾病相关。文章简要综述了保守非编码元件的识别、功能及验证、起源演化以及与人类疾病的关系。  相似文献   

7.
8.
9.
10.
The preTa subfamily of long interspersed elements (LINEs) is characterized by a three base-pair "ACG" sequence in the 3' untranslated region, contains approximately 400 members in the human genome, and has low level of nucleotide divergence with an estimated average age of 2.34 million years old suggesting that expansion of the L1 preTa subfamily occurred just after the divergence of humans and African apes. We have identified 362 preTa L1 elements from the draft human genomic sequence, investigated the genomic characteristics of preTa L1 insertions, and screened individual elements across diverse human populations and various non-human primate species using polymerase chain reaction (PCR) assays to determine the phylogenetic origin and levels of human genomic diversity associated with the L1 elements. All of the preTa L1 elements analyzed by PCR were absent from the orthologous positions in non-human primate genomes with 33 (14%) of the L1 elements being polymorphic with respect to insertion presence or absence in the human genome. The newly identified L1 insertion polymorphisms will prove useful as identical by descent genetic markers for the study of human population genetics. We provide evidence that preTa L1 elements show an integration site preference for genomic regions with low GC content. Computational analysis of the preTa L1 elements revealed that 29% of the elements amenable to complete sequence analysis have apparently escaped 5' truncation and are essentially full-length (approximately 6kb). In all, 29 have two intact open reading frames and may be capable of retrotransposition.  相似文献   

11.
The recent availability of genome-scale genotyping data has led to the identification of regions of the human genome that seem to have been targeted by selection. These findings have increased our understanding of the evolutionary forces that affect the human genome, have augmented our knowledge of gene function and promise to increase our understanding of the genetic basis of disease. However, inferences of selection are challenged by several confounding factors, especially the complex demographic history of human populations, and concordance between studies is variable. Although such studies will always be associated with some uncertainty, steps can be taken to minimize the effects of confounding factors and improve our interpretation of their findings.  相似文献   

12.
13.
Positive and negative selection on the human genome.   总被引:42,自引:0,他引:42  
J C Fay  G J Wyckoff  C I Wu 《Genetics》2001,158(3):1227-1234
The distinction between deleterious, neutral, and adaptive mutations is a fundamental problem in the study of molecular evolution. Two significant quantities are the fraction of DNA variation in natural populations that is deleterious and destined to be eliminated and the fraction of fixed differences between species driven by positive Darwinian selection. We estimate these quantities using the large number of human genes for which there are polymorphism and divergence data. The fraction of amino acid mutations that is neutral is estimated to be 0.20 from the ratio of common amino acid (A) to synonymous (S) single nucleotide polymorphisms (SNPs) at frequencies of > or =15%. Among the 80% of amino acid mutations that are deleterious at least 20% of them are only slightly deleterious and often attain frequencies of 1-10%. We estimate that these slightly deleterious mutations comprise at least 3% of amino acid SNPs in the average individual or at least 300 per diploid genome. This estimate is not sensitive to human population history. The A/S ratio of fixed differences is greater than that of common SNPs and suggests that a large fraction of protein divergence is adaptive and driven by positive Darwinian selection.  相似文献   

14.
The search for adaptive evolution in the human genome has reached a new era with the advent of genome-wide surveys of genetic variation. However, making sense, let alone use, of such experiments is far from straightforward. Key problems include the way in which the data have been collected, the need to control for factors such as population history and variable recombination rates, which influence the discovery rates for both true and false positives, and the inherent difficulty of falsification. Nevertheless, recent work has shown that genome scans can be used to identify both functional polymorphisms underlying selected traits and entire classes of genes enriched for signals of adaptation.  相似文献   

15.
A map of recent positive selection in the human genome   总被引:10,自引:1,他引:9       下载免费PDF全文
The identification of signals of very recent positive selection provides information about the adaptation of modern humans to local conditions. We report here on a genome-wide scan for signals of very recent positive selection in favor of variants that have not yet reached fixation. We describe a new analytical method for scanning single nucleotide polymorphism (SNP) data for signals of recent selection, and apply this to data from the International HapMap Project. In all three continental groups we find widespread signals of recent positive selection. Most signals are region-specific, though a significant excess are shared across groups. Contrary to some earlier low resolution studies that suggested a paucity of recent selection in sub-Saharan Africans, we find that by some measures our strongest signals of selection are from the Yoruba population. Finally, since these signals indicate the existence of genetic variants that have substantially different fitnesses, they must indicate loci that are the source of significant phenotypic variation. Though the relevant phenotypes are generally not known, such loci should be of particular interest in mapping studies of complex traits. For this purpose we have developed a set of SNPs that can be used to tag the strongest ∼250 signals of recent selection in each population.  相似文献   

16.
A report on the genomics workshop 'Identification of Functional Elements in Mammalian Genomes', Cold Spring Harbor, New York, 11-13 November 2004.  相似文献   

17.
Repetitive elements may comprise over two-thirds of the human genome   总被引:1,自引:0,他引:1  
Transposable elements (TEs) are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo "clouds"). We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%-69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM), to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (~25 bp). Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed "element-specific" P-clouds (ESPs) to identify novel Alu and MIR SINE elements, and using it we identified ~100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed.  相似文献   

18.
19.
Ultraconserved noncoding elements (UCNEs) constitute less than 1 Mb of vertebrate genomes and are impervious to accumulating mutations. About 4000 UCNEs exist in vertebrate genomes, each at least 200 nucleotides in length, sharing greater than 95% sequence identity between human and chicken. Despite extreme sequence conservation over 400 million years of vertebrate evolution, we show both ordered interspecies and within-species interindividual variation in DNA methylation in these regions. Here, we surveyed UCNEs with high CpG density in 56 species finding half to be intermediately methylated and the remaining near 0% or 100%. Intermediately methylated UCNEs displayed a greater range of methylation between mouse tissues. In a human population, most UCNEs showed greater variation than the LINE1 transposon, a frequently used epigenetic biomarker. Global methylation was found to be inversely correlated to hydroxymethylation across 60 vertebrates. Within UCNEs, DNA methylation is flexible, conserved between related species, and relaxed from the underlying sequence selection pressure, while remaining heritable through speciation.  相似文献   

20.
Genome size displays an important variability between species without any direct link to complexity. This paradox, so-called "C value paradox", now becomes understood as resulting from a differential abundance of numerous repeated sequences, among which transposable elements. Genomes indeed contain a important proportion of such sequences (95 % of DNA in man, about 45 % of which are transposable elements, up to 99 % of DNA in some plants). While most investigations until now are focalized on genes or coding sequences, which thus represent a small part of the genome, more attention now is dedicated on so-called non-coding sequences. Transposable elements, which are capable of moving around in genomes, inducing mutations, chromosomal rearrangements, gene expression regulations, thus appear as major actors in diversity and evolution. We present here a brief review of the most prominent acquisition in this expanding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号