首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The prosthetic groups of pig brain mitochondrial monoamine oxidase   总被引:11,自引:0,他引:11  
  相似文献   

3.
Isopropylhydrazide of D,L-serine (IHS) inhibits by 50% (at 37 degrees for 10 min) deamination of serotonin or beta-phenylethylamine by monoamine oxidases from bovine brain stem mitochondrial membranes at the 2.6 X X 10(-5) M or 9 X 10(-5) M, respectively. In order to inhibit by 50% the deamination of tyramine under the same conditions a considerably lower (2.5 X X 10(-6) M) concentration of IHS is required. Kinetic studies of inhibition of enzymatic deamination of all the three biogenic monoamines by IHS showed that the irreversible blocking of the monoamine oxidase activity is preceeded by formation of dissociating enzyme-inhibitor complexes. Values of the dissociation constants of these complexes measured (at 37 degrees) with serotonin, phenylethylamine or tyramine as substrates for estimation of the residual monoamine oxidase activity are 0.47; 0.13 or 0.023 mM, respectively. Significant differences are also found between thermodynamic and activation parameters characterizing both both steps of interaction between IHS and the monoamine oxidases of mitochondrial membranes in the experiments with serotonin, phenylethylamine or tyramine as substrates. The data obtained suggest the existence of different monoamine oxidases (or their active sites) catalyzing oxidative deamination of serotonin, phenylethylamine or tyramine in the fragments of mitochondrial membranes from bovine brain stem.  相似文献   

4.
Oxidation of six amine substrates by rat, rabbit and guinea-pig lung mitochondrial monoamine oxidase (MAO) was investigated polarographically with a Clark oxygen electrode in the presence of chlorphentermine (CP). This amphiphilic drug decreased the deamination of serotonin, norepinephrine, tyramine and dopamine significantly in all three species. However, the oxidation of tryptamine and benzylamine was unchanged. Amine oxidation by MAO in guinea-pig lung mitochondria was much more sensitive to the CP-mediated inhibition than rat or rabbit. A kinetic study of serotonin oxidation in the absence and presence of CP showed that both Vmax and Km were affected. These combined data indicate that CP is a specific inhibitor of pulmonary, mitochondrial monoamine oxidase form A with mixed-type inhibition.  相似文献   

5.
Oxidative deamination of various biogenic monoamines by Ascaridia galli monoamine oxidase (MAO) was blocked by different mammalian MAO inhibitors, namely, iproniazid, trans-PcP, nialamide and pargyline and the blockade was observed to be time as well as concentration dependent. The binding of inhibitors with chick ascarid MAO was of the irreversible type and the nature of the inhibition was competitive. Pargyline showed lowest I50 (8 microM) and Ki (12 microM) values. Chlorgyline and deprenyl at 100 microM concentration inhibited MAO by about 60 and 40% respectively, indicating the presence of both type A and type B MAO in A. galli.  相似文献   

6.
7.
Pulmonary mitochondrial monoamine oxidase (MAO) activity was examined in preparations from rat, rabbit and guinea-pig with 12 different amines as substrates: serotonin, norepinephrine, and octopamine (type A specific); tryptamine, benzylamine, 5-methoxytryptamine, 5-methyltryptamine, p-methoxyphenylethylamine, and 3,4-dimethoxyphenethylamine (type B specific); and tyramine, dopamine and 3-methoxytyramine (type A + B specific). The oxidation of type A and type A + B substrates was greater in guinea-pig lung mitochondria than in rat or rabbit preparations. Except for benzylamine, the oxidation of type B substrates was similar in all three species. Benzylamine was not oxidized by guinea-pig lung mitochondria but was actively metabolized by rat and rabbit preparations.  相似文献   

8.
The molecular size of bovine brain mitochondrial monoamine oxidase (MAO) was investigated Mitochondria were solubilized with an anionic detergent. Emarl 20C, and fractionated by ammonium sulfate. Ammonium sulfate-fractionated MAO was subjected to detergent-containing gel chromatography and detergent-containing gel electrophoresis. MAO activity appeared as single symmetrical peak in gel chromatography in the presence of 1% Emarl 20C, and the molecular weight was estimated to be 44,000. Polymerization of MAO was observed when gel chromatography was performed in lower (0.1%, 0%) concentrations of Emarl 20C. Activity staining of MAO after electrophoresis on a gel containing 0.1% Emar 20C was successful. The molecular weight of MAO estimated from the mobility of this stained band was 89,000. It is suggested that the molecular weight of MAO is 44,000 and that it recombines in low concentrations of the detergent to form complex particles with molecular weights of 89,000 or more.  相似文献   

9.
10.
Mitochondrial monoamine oxidase was inactivated by o-mercaptobenzylamine (1) and o- (2) and p-methylthiobenzylamine (5). Experiments were carried out to provide evidence for possible mechanisms of inactivation. The corresponding o- (3) and p-hydroxybenzylamine (4) are not inactivators. Four radiolabeled analogues of 2 and 5, having radioactivity at either the methyl or benzyl groups, were synthesized, and all were shown to incorporate multiple equivalents of radioactivity into the enzyme. Inactivation in the presence of an electrophile scavenger decreased the number of molecules incorporated, but still multiple molecules became incorporated; catalase did not further reduce the number of inactivator molecules bound. Two inactivation mechanisms are proposed, one involving a nucleophilic aromatic substitution (SNAr) mechanism and the other a dealkylation mechanism. Evidence for both mechanisms is that inactivation leads to reduction of the flavin (oxidation of the inactivator), but upon denaturation the flavin is reoxidized, indicating that attachment is not at the flavin. A cysteine titration indicates the loss of four cysteines after inactivation and denaturation. Support for the SNAr mechanism was obtained by showing that o- and p-chlorobenzylamine also inactivate MAO. Chemical model studies were carried out that also support both SNAr and dealkylation mechanisms.  相似文献   

11.
12.
We compared the inhibitory and catalytic effects of various monoamines on forms A and B of monoamine oxidase (MAO) on mitochondrial preparations from rat brain in mixed substrate experiments. MAO activity was determined by a radioisotopic assay. MAO showed lower Km values for tryptamine and β-phenylethylamine than for tyramine and serotonin. The Km values of the untreated preparation for tyramine, tryptamine, and β-phenylethylamine obtained were the same as those of the form B enzyme and the Km value for serotonin was the same as that of the form A enzyme. Tyramine and tryptamine were competitive inhibitors of serotonin oxidation and β-phenylethylamine did not bind with form A enzyme or inhibit the oxidation of serotonin, while tyramine and tryptamine were competitive inhibitors of β-phenylethylamine oxidation. Although serotonin was not oxidized by form B enzyme, serotonin was a competitive inhibitor of β-phenylethylamine oxidation. It is suggested that rat brain mitochondrial MAO is characterized by two kinds of binding sites.  相似文献   

13.
The inhibition by some thiol reagents of partly purified mitochondrial monoamine oxidase (MAO) (EC 1.4.3.4) from rat liver was studied, and the molar content of sulfhydryl groups in the enzyme determined. Sodium nitroprusside and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) inhibited the enzyme, apparently reversibly, while sodium arsenite was not inhibitory. Concentrations of the respective inhibitors causing 50% inhibition after 15 min of preincubation with the enzyme at pH 7.0 and 37 degrees C are 5.80 times 10(-4) M and 4.35 times 10(-5) M. The thiol compounds cysteine, dithiothreitol, and 2-mercaptoethanol did not inhibit MAO. The average number of sulfhydryl groups per mole of enzyme, determined by reaction with DTNB, increased from 3.6 +/- 0.2 freely reacting sulfhydryl groups (n = 4) to 18.4 to total sulfhydryl groups (n = 2) on denaturation with 8 M urea.  相似文献   

14.
Following earlier observations on the retention of 5-hydroxytryptamine oxidizing activity by a purified preparation of monoamine oxidase from rat liver mitochondria, this fraction has been obtained in a water-soluble form by Triton X-100 gradient gel filtration and DEAE-Bio-Gel A chromatography. The soluble fraction appears to depend on Triton X-100 and phospholipids for its activity. The results seem to implicate membrane lipid components in the expression of rat liver mitochondrial monoamine oxidase activity.  相似文献   

15.
16.
17.
18.
The inhibition of the deamination of serotonin (the main substrate of monoamine oxidase (MAO) type A) by chlorgiline and deprenyl and of beta-phenylethylamine (the main substrate of the B type MAO) by fragments of rat liver mitochondrial membrane as well as the influence of 4-ethylpyridine on this process were studied. It was shown that the MAO activity of the mitochondrial membrane fragments was highly sensitive to chlorgiline, when serotonin was used as substrate, whereas a high sensitivity toward deprenyl was observed with beta-phenylethylamine as substrate. 4-Ethylpyridine (5.10(-3) M), a competitive and reversible inhibitor of the MAO activity, inhibited deamination of serotonin and beta-phenylethylamine by 34 and 30%, respectively. In experiments with chlorgiline (the specific inhibitor of MAO type A) 4-ethylpyridine (5.10(-3) M) introduced into the samples after preincubation of mitochondria with increasing concentrations of chlorgiline (30 min, 23 degrees C) decreased the inhibition by chlorgiline of the deamination of beta-phenylethylamine, but sharply increased the inhibitory effect of chlorgiline on the oxidation of serotonin. In analogous experiments with deprenyl (the specific inhibitor of MAO type B) 4-ethylpyridine (5.10(-3) M) decreased the inhibitory effect of deprenyl not only on the deamination of serotonin (substrate of MAO A), but also on the oxidation of beta-phenylethylamine (the main substrate of MAO type B). The decrease in the inhibitory effect of deprenyl on the deamination of beta-phenylethylamine after the addition of 4-ethylpyridine may be intensified upon preincubation of deprenyl with mitochondria in the presence of 4-ethylpyridine. The data obtained demonstrate the difference in the type and mechanism of inhibition of the deamination of serotonin by chlorgiline as well as in the type and mechanism of oxidation of beta-phenylethylamine by deprenyl. The possible mechanism of selective blocking of MAO activity by chlorgiline and deprenyl was discussed in terms of our previous data on the existence in the active center of mitochondrial MAO of specific sites for substrate binding, differing in their structure-functional characteristics.  相似文献   

19.
1. A preparation of a partly purified mitochondrial outer-membrane fraction suitable for kinetic investigations of monoamine oxidase is described. 2. An apparatus suitable for varying the O(2) concentration in a spectrophotometer cuvette is described. 3. The reaction catalysed by the membrane-bound enzyme is shown to proceed by a double-displacement (Ping Pong) mechanism, and a formal mechanism is proposed. 4. KCN, NaN(3), benzyl cyanide and 4-cyanophenol are shown to be reversible inhibitors of the enzyme. 5. The non-linear reciprocal plot obtained with impure preparations of benzylamine, which is typical of high substrate inhibition, is shown to be due to aldehyde contamination of the substrate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号