首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The study examined the subcellular distribution of [3H]glucosamine-labeled glycoconjugates undergoing axonal transport in 100,000 x g soluble and two membranous subfractions of the garfish olfactory nerve. Analysis was made of intact glycoconjugates and of glycopeptides and glycosaminoglycans derived from these molecules by limit protease digestion. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed labeling of a variety of high-molecular-weight molecules with a lower molecular weight distribution in the soluble fraction than in the membranous fractions. Following protease digestion, nearly two-thirds of transported radioactivity in glycopeptides was recovered in the plasma membrane-enriched subfraction, with the remainder equally divided between soluble and higher density membrane fraction. Comparison of the distribution of glycopeptide radioactivity and chemically assayed hexosamine revealed transport labeling of a large variety of different-sized neutral and acidic glycopeptides in all subfractions. Transport labeling of most glycoprotein carbohydrate chains was in proportion of their hexosamine content. Transported glycosaminoglycan label was most heavily concentrated in the plasma membrane fraction, whereas hexosamine was most concentrated in the higher density membrane fraction. The labeling pattern suggested both transported and nontransported pools of these molecules. The specific glycosaminoglycans chondroitin sulfate and heparan sulfate were recovered in all subfractions, whereas hyaluronic acid was confined to the soluble fraction.  相似文献   

2.
Abstract: This study examined changes in composition and concanavalin A (Con A) binding of axonally transported glycoproteins and their pronase-generated glycopeptides in regenerating garfish olfactory nerve. A previous study had demonstrated a regeneration-related increase in the proportion of [3H]glucosamine label in lower-molecular-weight Con A-binding glycopeptides derived from transported glycoproteins. Further analysis of carbohydrate composition shows that these molecules resemble mannose-rich oligosaccharides in composition and are increased in absolute amount in regenerating nerve. Subcellular analysis shows that the Con A-binding glycopeptides are enriched in membrane subfractions, particularly in a high-density fraction that morphologically resembles isolated cell surface coat. Regeneration-related changes in intact axonally transported glycoproteins were also detected. Sodium dodecyl sulfate gel electrophoresis of transport-labeled glycoproteins disclosed growth-correlated increases in radioactivity associated with 180–200K, 105–115K, and 80–90K components, while a 150–160K molecular weight class of glycoproteins was diminished in relative labeling. Intact glycoproteins displaying an affinity for Con A were also augmented in regenerating nerve, the increases occurring primarily in molecules in the 50–140K range.  相似文献   

3.
The study addressed the question of whether35SO4 labeled molecules that the have been delivered to the goldfish optic nerve terminals by rapid axonal transport include soluble proteoglycans. For analysis, tectal homogenates were subfractionated into a souluble fraction (soluble after centrifugation at 105,000g), a lysis fraction (soluble after treatment with hypotonic buffer followed by centrifugation at 105,000g) and a final 105,000g pellet fraction. The soluble fraction contained 25.7% of incorporated radioactivity and upon DEAE chromatographys was resolved into a fraction of sulfated glycoproteins eluting at 0–0.32 M NaCl and containing 39.5% of total soluble label and a fraction eluting at 0.32–0.60 M NaCl containing 53.9% of soluble label. This latter fraction was included on columns of Sepharose CL-6B with or without 4 M guanidine and after pronase digestion was found to have 51% of its radioactivity contained in the glycosaminoglycans (GAGs) heparan sulfate and chondroitin (4 or 6) sulfate in the ratio of 70% to 30%. Mobility of both intact proteoglycans and constituent GAGs on Sepharose CL-6B indicated a size distribution that is smaller than has been observed for proteoglycans and GAGs from cultured neuronal cell lines. Similar analysis of lysis fraction, containing 11.5% of incorporated35SO4, showed a mixture of heparan sulfate and chondroitin sulfate containing proteoglycans, apparent free heparan sulfate and few, if any, sulfated glycoproteins. Overall, the result support the hypothesis that soluble proteoglycans are among the molecules axonally transported in the visual system.  相似文献   

4.
Abstract— Mouse brain subcellular fractions were prepared at 1, 12, and 24 h and 3 and 8 days after intracerebral injections of [1-14C]arachidonate. Initially, radioactivity was mainly distributed in the microsomal and synaptosomal fractions, but the proportion of radioactivity in the myelin increased from 5 to 16% within 8 days. Radioactivity of the microsomal lipids started to decline at 1 h after injection, and the decay was represented by two pools with half-lives of 19 h and 10 days, respectively. Radioactivity in the synaptosomal and myelin fractions did not reach a maximum until 24 h after injections. The half-life for turnover of synaptosomal lipids was 9 days.
The decline of radioactivity measured in the microsomal fraction was due mainly to diacyl-GPC and diacyl-GPI, since radioactivity of other phosphoglycerides (diacyl-GPS, diacyl-GPE and alkenyl-acyl-GPE) continued to increase for 12-24 h. In this fraction, half-lives of 10-14 h were obtained for the fast turnover pools of diacyl-GPC and diacyl-GPI, and slow turnover pools with half-lives of 7 days for diacyl-GPI and 10-14 days for other phosphoglycerides were also present. Among the synaptosomal phosphoglycerides, radioactivity of diacyl-GPI declined in a biphasic mode, thus exhibiting half-lives of 5 h and 5 days. Incorporation of labelled arachidonate into diacyl-GPE and diacyl-GPS in the synaptosomal fractions was observed for a period of 24 h. The half-lives for these phosphoglycerides ranged from 8 to 12 days. Results of the study have demonstrated the presence of small pools of arachidonoyl-GPI in synaptosomal and microsomal fractions which were metabolically more active than other arachidonoyl containing phosphoglycerides.  相似文献   

5.
TRANSPORT AND TURNOVER OF NEUROHYPOPHYSIAL PROTEINS OF THE RAT   总被引:2,自引:0,他引:2  
Axonal transport and turnover rate of proteins in the supraoptico-neurohypo-physial tract were studied after injection of 35S cysteine into the region of the supraoptic nucleus. The proximo-distal migration of labelled proteins from the nerve cell bodies to the axon terminals in the neurohypophysis was followed by measuring the radioactivity of neurohypophysial proteins at various time intervals (4 h to 30 days) after isotope injection. A rapidly transported phase of proteins with a minimal transport rate of approximately 60 mm/day was demonstrated. An accumulation of protein-bound radioactivity was also observed in the neural lobe at 9 days after isotope injection, representing slowly transported proteins (0-5 mm/day). In addition, an intermediate phase of axonal transport (1-5 mm/day) was found. Fractionation of neurohypophysial proteins by polyacrylamide gel disc electrophoresis revealed that a predominating portion of the radioactivity was recovered in a single protein component (fraction A) at 4 h as well as at 30 days after isotope injection. This protein component was shown to be a constituent both of the rapid and the slow phase of axonal transport. With time an increasing amount of radioactivity was found in another protein component (fraction B), which reached a maximum at 14 days after injection and then remained fairly constant up to 30 days. When the turnover rates of neurohypophysial proteins were estimated, a half-life of 1-2 days and 8 days was calculated for the rapidly and slowly transported proteins, respectively.  相似文献   

6.
Changes in axonally transported phospholipids of regenerating goldfish optic nerve were studied by intraocular injection of [2-3H]glycerol 9 days and 16 days after nerve crush at 30°C. The four major glycerophospholipids all showed substantial increases in transported radioactivity above non-regenerating controls at both time points, these being maximal (15- to 35-fold) in the optic nerve-tract at 9 days and about half as great at 16 days. In the contralateral optic tectum transported label increased 6- to 13-fold at 9 days and 10- to 25-fold at 16 days in the various glycerophospholipids. While all glycerophospholipids showed absolute increases in both tissues, PS and PI increased relatively more, especially in the tectum. The regeneration-associated increases in transported label of all glycerophospholipids were larger than those previously demonstrated for gangliosides and glycoproteins in the same system. Special Issue dedicated to Dr. Eugene Kreps.  相似文献   

7.
Protein synthesis and transport in the regenerating goldfish visual system   总被引:13,自引:0,他引:13  
The nature of the proteins synthesized in the goldfish retina and axonally transported to the tectum during optic nerve regeneration has been examined. Electrophoretic analysis of labeled soluble retinal proteins by fluorography verified our previous observation of a greatly enhanced synthesis of the microtubule subunits. In addition, labeling of a tubulin-like protein in the retinal particulate fraction was also increased during regeneration. Like soluble tubulin, the particulate material had an apparent MW of 53–55K and could be tyrosylated in the presence of cycloheximide and [3H]tyrosine. Comparison of post-crush and normal retinal proteins by two-dimensional gel electrophoresis also revealed a marked enhancement in the labeling of two acidic 68–70K proteins. Analysis of proteins slowly transported to the optic tectum revealed changes following nerve crush similar to those observed in the retina, with enhanced labeling of both soluble and particulate tubulin and of 68–70K polypeptides. The most striking change in the profile of rapidly transported protein was the appearance of a labeled 45K protein which was barely detectable in control fish.  相似文献   

8.
—Application of 35SO4 to the olfactory mucosa of the long-nosed garfish is found to label sulfated macromolecules which are transported down the olfactory nerve. The transported molecules pass along the nerve as a discrete peak whose leading edge has a transport velocity of 206 ± 6 mm/day. A large portion of the radioactivity from the peak is deposited along the axon. At 2 days after isotope application 83% of the total nerve radioactivity is in the axons and the remaining 17% has accumulated at the terminals in the olfactory bulb. Characterization of sulfated material in the migrating peak indicates that both sulfated glycoproteins (isolated as glycopeptides) and mucopolysaccharides, including chondroitin sulfate and heparan sulfate, are undergoing transport.  相似文献   

9.
Following intravenous injection of [U-14C]palmitate in awake adult rats, whole brain radioactivity reached a broad maximum between 15–60 min, then declined rapidly to reach a relatively stable level between 4 hr and 20 hr. At 44 hr total radioactivity was 57% of the 4 hr value (p<0.05). About 50% of palmitate which entered the brain from the blood was oxidized rapidly, producing14C-labeled water-soluble components which later left the cytosol. Radioactivity in the cytosolic fraction peaked at 45 min and then declined, coincident with the decline in total brain radioactivity. Membrane fractions were rapidly labeled to levels which remained relatively stable from 1 to 44 hr. Increases in the relative distributions of radioactivity were seen between 1 and 4 hr for the microsomal and mitochondrial fractions, and beyond 4 hr for the synaptic and myelin membrane fractions (p<0.05). Radioactivity in membrane fractions was 80–90% lipid, 5–13% water-soluble components and 3–17% protein. The proportion of label in membrane-associated protein increased with time. Proportions of radioactivity in the combined membrane fractions increased from 65% to 76% to 80% at 4, 20 and 44 hr, respectively. The results show that plasma-derived palmitate enters oxidative and synthetic pathways to an equal extent, immediately after entry into the brain. At and after 4 hr, the radiolabel resides predominantly in stable membrane lipids and protein. Brain radioactivity at 4 hr can be used therefore, to examine incorporation of palmitate into lipids in vivo, in different experimental conditions.  相似文献   

10.
Maarten J. Chrispeels 《Planta》1983,157(5):454-461
Incubation of developing cotyledons of P. vulgaris with [3H]fucose resulted in the incorporation of radioactivity into the cell wall, membranous organelles and soluble macromolecules. Fractionation of the proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by fluorography, showed that phytohemagglutinin (PHA) was the major fucosylated protein synthesized in the cotyledons. Incorporation of fucose into PHA occurred in the membranous organelle fraction, and the radioactive fucose remained associated with the PHA during a 20-h chase of the radioactivity. Tunicamycin inhibited the incorporation of glucosamine and fucose into PHA to the same extent (65%), indicating the involvement of a lipid intermediate in the incorporation of fucose, or the attachment of fucose to the high-mannose oligosaccharide moiety of newly synthesized PHA. Digestion with proteinase K of [3H]fucose- or [3H]glucosamine-labeled PHA resulted in the formation of glycopeptides of similar size. These glycopeptides were partially resistant to digestion with endo-β-N-acetylglucosaminidase H, even after the removal of fucose by mild acid hydrolysis. We postulate, on the basis of these experiments, that the transport of PHA from the endoplasmic reticulum to the protein bodies is accompanied by the modification of its oligosaccharide side-chain. This modification involves inter alia the attachment of fucose, and renders the oligosaccharide side-chain resistant to digestion with endo-β-N-acetylglucosaminidase H. Analogy with animal glycoproteins indicates that this modification probably occurs in the Golgi apparatus.  相似文献   

11.
Mannose-rich glycopeptides derived from brain glycoproteins were obtained by proteolysis of bovine brain tissue or subcellular fractions derived from rat brain tissue. The dialyzable mannose-rich glycopeptides were isolated by colum electrophoresis and gel flitration. These glycopeptides contained, on the average, six mannose and two N-acetylglucosamine residues with variable amounts of fucose and galactose. Over 50% of the mannose-rich glycopeptides of rat brain were localized in the microsomal and synaptosomal fractions; myelin and the soluble fraction contained lesser amounts. None was recovered from the mitochondria. The amount, per mg protein, of mannose-rich oligosaccharide chains in the myelin exceeded the concentration found in the microsomal and synaptosomal fractions. The concentration of mannose-rich glycopeptides derived from glycoproteins was 50% higher in white matter than in gray. On the other hand, the non-dialyzable and acidic sialoglycopeptides showed a three-fold enrichment in gray matter compared to white. The relatively lower ratio of sialoglycopeptides to mannose-rich glycopeptides observed in white matter (2.5) compared to gray matter (6.9) is reflected in the lower value for the ratio in myelin (1.1) compared to synpatosomes (2.1). Although glycoproteins that contain mannose-rich oligosaccharide chains are present in the nerve cell and its terminals, these glycoproteins appear to be relatively enriched in myelin and/or glial membranes.  相似文献   

12.
The insertion of axonally transported fucosyl glycoproteins into the axolemma of regenerating nerve sprouts was examined in rat sciatic motor axons at intervals after nerve crush. [(3)H]Fucose was injected into the lumbar ventral horns and the nerves were removed at intervals between 1 and 14 d after labeling. To follow the fate of the “pulse- labeled” glycoproteins, we examined the nerves by correlative radiometric and EM radioautographic approaches. The results showed, first, that rapidly transported [(3)H]fucosyl glycoproteins were inserted into the axolemma of regenerating sprouts as well as parent axons. At 1 d after delivery, in addition to the substantial mobile fraction of radioactivity still undergoing bidirectional transport within the axon, a fraction of label was already associated with the axolemma. Insertion of labeled glycoproteins into the sprout axolemma appeared to occur all along the length of the regenerating sprouts, not just in sprout terminals. Once inserted, labeled glycoproteins did not undergo extensive redistribution, nor did they appear in sprout regions that formed (as a result of continued outgrowth) after their insertion. The amount of radioactivity in the regenerating nerves decreased with time, in part as a result of removal of transported label by retrograde transport. By 7-14 d after labeling, radioautography showed that almost all the remaining radioactivity was associated with axolemma. The regenerating sprouts retained increased amounts of labeled glycoproteins; 7 or 14 d after labeling, the regenerating sprouts had over twice as much of radioactivity as comparable lengths of control nerves or parent axons. One role of fast axonal transport in nerve regeneration is the contribution to the regenerating sprout of glycoproteins inserted into the axolemma; these membrane elements are added both during longitudinal outgrowth and during lateral growth and maturation of the sprout.  相似文献   

13.
After incubation of pigeon pancreas slices with P32 and isolation of various fractions by differential centrifugation the deoxycholate extract of the microsome fraction was found to account for over half of the phospholipide P and over half of the P32 incorporated into the phospholipides. The remaining phospholipide P and P32 were fairly evenly distributed in the nuclei, zymogen granules, mitochondria, microsomal ribonucleoprotein particles, and the soluble fraction. When enzyme secretion was stimulated with acetylcholine about two-thirds of the increment in radioactivity in the total phospholipides was found in deoxycholate soluble components of the microsome fraction. The remainder of the increment was distributed in the other fractions. This indicates that the cellular component in which the increase in phospholipide turnover occurs on stimulation of secretion is a membranous structure. Evidence is presented which indicates that the increment in radioactivity in the non-microsomal fractions on stimulation of secretion is due to contamination of these fractions with fragments of the stimulated membranous structure. The distribution of P32 radioactivity in each of the chromatographically separated phospholipides in the various fractions from unstimulated tissue paralleled the distribution of radioactivity in the total phospholipide fraction, indicating that individual phospholipides are not concentrated in different fractions but are associated together in the membranous structures of the microsome fraction. The major proportion of the stimulation of the turnover of the individual phospholipides also occurred in the microsome fraction. The distribution of radioactivity from glycerol-1-C14 in the total phospholipides and in the individual phospholipides in the various fractions was similar to the distribution of P32. In the microsome fraction acetylcholine stimulated the incorporation of glycerol-1-C14 in each phospholipide which showed a stimulation of P32 incorporation. The significance of the turnover of phosphatides in microsomal membranes in relation to the mechanism of secretion is discussed.  相似文献   

14.
A 4 day half-life of dopamine beta-hydroxylase (DBH) was determined for rats injected IV with 125I-rat DBH from the slow exponential component of radioactivity appearing in plasma, urine, feces and combined urine and feces. Half-life estimates for 125I-rat DBH injected IV into WKY and SHR animals did not differ from Sprague Dawley (Zivic Miller) rats. Radioactivity declined in parallel in plasma, urine and feces following IV 125I-rat DBH administration and each radioactivity falloff curve could be resolved into two components. The slow phase of the decline of radioactivity excreted into urine and feces from which DBH half-life was calculated occurred between 5 and 25 days after 125I-rat DBH injection. The early fast phase which is associated with distribution of the exogenous protein in body fluids and tissues continued for approximately the first 140 hr after DBH injection. The distribution characteristics of IV administered active bovine DBH and 125I-rat DBH into the lymphatic system were examined. After active bovine DBH or 125I-rat DBH was injected IV into rats, active DBH or radioactivity, respectively, appeared in lymph fluid (thoracic duct) within 20 min; reached peak concentrations within 90 min, and thereafter, declined in parallel with the plasma concentration. The concentration of radioactivity in plasma and lymph fluid were found to be unequal at 9 hr but were equivalent 68–75 hrs after IV injection of 125I-rat DBH. Based on the amount of active DBH or radioactivity which accumulates in lymph fluid it is clear that'a substantial amount (> 50%) of the DBH in blood circulates through the lymphatic channels. Analysis of parallel experiments with labelled serum albumin indicate that use of these methods to study plasma proteins do provide sensitive measures of biological half-life and lymphatic distribution characteristics. Specifically for DBH, the results of our study suggest that DBH normally circulates in plasma and lymph fluid with a biological half-life of 4 days.  相似文献   

15.
From cells of a nullipotential line of embryonal carcinoma was isolated a membrane fraction enriched in the cell surface F9 antigen. More than 40% of the radioactive fucose and galactose incorporated by cells into nondialyzable material was recovered in this membrane preparation, corresponding to an approximately 10-fold purification of the labeled material. Extreme heterogeneity of membrane glycoproteins labeled with these sugars was revealed by sodium dodecyl sulfate gel electrophoresis. Glycopeptides prepared by extensive pronase digestion of membranes labeled with fucose or galactose showed properties similar to those already described for fucose-labeled glycopeptides from whole cells. Namely, large glycopeptides eluted near the excluded volume of Sephadex G-50 column were the predominant glycopeptide species, while complex glycopeptides of molecular weight around 2500 were minor components. Therefore, these large glycopeptides, characteristic of embryonal carcinoma cells, are derived mainly from a variety of glycoproteins closely associated with the membrane system, most probably cell-surface membrane of the cells. The large glycopeptides were also significantly labeled with glucosamine, but only slightly with mannose; major components of mannose-labeled glycopeptides from the membranes were high-mannose glycopeptides of low molecular weight. Several experiments excluded the possibility that the larg glycopeptides are mucopolysaccharides, glycolipids or mucin-type glycoproteins with short oligosaccharide chains.  相似文献   

16.
Studies on isolated synaptic plasma membranes (SPM) have detected little if any heparan sulfate or other glycosaminoglycans (GAGs), while more recent studies employing proteoglycan antibodies have localized heparan sulfate proteoglycan in presynaptic plasma membrane of intact tissue. To further address the issue of proteoglycans in synaptic plasma membrane of intact tissue. To further address the issue of proteoglycans in synaptic plasma membrane, we have investigated the possible presence of axonally transported GAGs in SPM isolated from the goldfish optic tectum. SPMs isolated from tecta following rapid axonal transport of35SO4 labeled molecules down the optic nerve, showed specific radioactivity approximately two-fold higher than the starting homogenate. Treatment of the transport labeled SPM with the enzyme heparitinase liberated 21% of the radioactivity, indicating the presence of a significant fraction of trnasported label in heparan sulfate. In a separate series of experiments a GAG fraction was isolated from transport labeled SPM and was found to consist of heparan sulfate containing 28% of transported radioactivity. Chondroitin (4 or 6) sulfate, which undergoes axonal transport in the goldfish optic system, was not found associated with SPM. Taken together the results support immunological evidence for the presence of heparan sulfate proteoglycans in presynaptic plasma membrane.To whom to address reprint request..  相似文献   

17.
After injection of labeled glycerol, choline, or serine into the eye of goldfish, labeled lipids were axonally transported along the optic nerve to the optic tectum. although the different precursors were presumably incorporated into somewhat different lipid populations, all three were approximately equally effective in labeling the lipids transported to the tectum, but the amount of transported material remaining in the nerve was different, being highest with choline and lowest with serine. The labeled lipids appeared in the tectum within 6 hr of the injection, indicating a fast rate of transport, but continued to accumulate over a period of 1–2 weeks, which presumably reflects the time course of their release from the cell body. Since there was a gradual increase in the proportion of labeled lipid in the tectum during this period, some other process in addition to fast axonal transport may have affected the distribution of the lipids along the optic axons. When [3H]choline was used as precursor, the transported material included a small amount of TCA-soluble material, which was probably mainly phosphorylcholine, with labeled acetylcholine appearing in only insignificant amounts. With serine, which gave rise to a large amount of axonally transported protein in addition to lipid, a late increase in the amount of labeled lipid in the tectum was seen, accompanied by a decrease in labeling of the protein fraction.  相似文献   

18.
FAST AND SLOW COMPONENTS IN AXONAL TRANSPORT OF PROTEIN   总被引:29,自引:8,他引:21       下载免费PDF全文
(a) After injection of labeled leucine into the eye of goldfish, radioactive protein rapidly accumulates in the contralateral optic tectum in the layer containing the synaptic endings of the optic fibers. This material reaches the tectum 6–12 hr after the isotope injection, a fact which indicates that the rate of transport is at least 40 mm per day. (b) This rapidly transported material has been shown to consist exclusively of protein, in which the label remains attached to leucine. (c) Inhibition of protein synthesis in the retina prevents the appearance of the transported protein in the tectum, but inhibition of protein synthesis in the tectum does not. Substances having some of the same properties as leucine, such as cycloleucine and norepinephrine, are not transported to the tectum. These experiments all indicate that the transported protein is synthesized in the retina. However, inhibition of retinal protein synthesis after this protein has been formed does not interfere with the transport mechanism itself. (d) The fast component consists of about 85% particulate material. It may be distinguished from a slowly moving component, transported at 0.4 mm per day, which contains about 5 times as much radioactivity as the fast component, and which consists of 60% particulate matter and 40% soluble protein.  相似文献   

19.
Abstract: Adult rats were injected intraocularly with [35S]methionine and killed from 1 to 10 weeks later. Optic nerves, optic tracts, and superior colliculi were dissected and then homogenized and separated into soluble and particulate fractions by centrifugation. Radioactivity coelectrophoresing with tubulin in buffers containing sodium dodecyl sulfate was determined (in cytoplasmic fractions, preliminary enrichment was achieved by vinblastine precipitation). Accumulation of radioactive tubulin along the optic pathway occurred in parallel (and in approximately equal amounts) in cytoplasmic and particulate fractions. Transported tubulin peaked at approximately 2 and 4 weeks in the optic nerve and tract, respectively, corresponding to a transport rate of ~ 0.4 mm/ day. There was little diminution in the amount of transported tubulin between optic nerve and tract, suggesting tubulin was not degraded in the axon. Accumulation in the superior colliculus reached a plateau by 4 weeks at less than 20% of the peak in the optic nerve, indicating turnover of tubulin at the nerve endings. The α/β subunit labeling ratio (radioactivity distribution between the tubulin subunits) was 0.57 for both cytoplasmic- and particulate-transported tubulin. In contrast, this ratio was 0.69 for whole brain tubulin prepared by vinblastine precipitation of soluble material. Isoelectric focusing and two-dimensional gel electrophoresis showed that the subunit compositions (microheterogeneity of the α and β bands) of transported tubulins in the cytoplasmic and particulate fractions were very similar. However, some differences relative to whole brain tubulin were noted; a tubulin subunit not identifiable in whole brain tubulin preparations but present in both soluble- and particulate-transported tubulin was observed. Because of the compositional and metabolic similarities of transported tubulin in the soluble and particulate fractions, we conclude that they form a common metabolic pool. This suggests either that, at least for some membranes, the well-characterized tight association between particulate tubulin and membranes may be artifactual or else that an equilibrium exists between soluble and particulate tubulin.  相似文献   

20.
The lipid-free protein residue of rat brain tissue was treated with papain to solubilize the heteropolysaccharide chains of the tissue glycoproteins. The glycopeptides were separated into non-dialyzable and dialyzable glycopeptide preparations. Each preparation was then sorted out into groups of glycopeptides by means of electrophoresis and gel filtration. The quantitatively predominant glycopeptides were the alkali-stable glycopeptides (Group A) which accounted for 64% of the glycopeptide carbohydrate recovered from rat brain. Most of the group A glycopeptides appeared in the non-dialyzable preparation. The molecular weight of the glycopeptides of Group A ranged from approximately 5200–3700. The largest glycopeptide molecule in this mixture possessed the highest electrophoretic mobility and contained one fucose, four N-acetylneuraminic acid (NANA), six N-acetylglucosamine, four galactose, and three mannose residues per molecule. The spectrum of glycopeptides isolated in this group showed a progressive decrease in NANA rsidues, NANA and galactose residues, and NANA, galactose, and N-acetylglucosamine residues which could be correlated with a progressive decline in molecular weight and electrophoretic mobility. Some of the glycopeptides in each fraction recovered from this group of glycopeptides contained sulfate ester groups.A second group of glycopeptides (Group C glycopeptides) accounted for 25% of the total glycoprotein carbohydrate recovered from rat brain. These were recoverd from the dialyzable glycopeptide preparation, and resolved into three fractions by column electrophoresis. These glycopeptides do not contain sulfate, are composed predominately of mannose and N-acetylglucosamine, and possess a molecular weight of approximately 3000.Several minor groups of glycopeptides were detected. Alkali-labile glycopeptides (Group B) appeared in the non-dialyzable glycopeptide preparation. The dialyzable glycopeptide preparation contained glycopeptides (Group E) which contained N-acetylgalactosamine and glucose. These had a molecular weight of approximately 2000. Group D glycopeptides recovered from the dialyzable glycopeptide preparation contained variable amounts of NANA, mannose, galactose, N-acetylglucosamine, and sulfate. These possessed a molecular weight of approximately 2900.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号