首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we describe a novel mechanism by which a protein kinase C (PKC)-mediated activation of the Raf-extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) cascade regulates the activity and membrane targeting of members of the cyclic AMP-specific phosphodiesterase D family (PDE4D). Using a combination of pharmacological and biochemical approaches, we show that increases in intracellular cAMP cause a protein kinase A-mediated phosphorylation and activation of the two PDE4D variants expressed in vascular smooth muscle cells, namely PDE4D3 and PDE4D5. In addition, we show that stimulation of PKC via the associated activation of the Raf-MEK-ERK cascade results in the phosphorylation and activation of PDE4D3 in these cells. Furthermore, our studies demonstrate that simultaneous activation of both the protein kinase A and PKC-Raf-MEK-ERK pathways allows for a coordinated activation of PDE4D3 and for the translocation of the particulate PDE4D3 to the cytosolic fraction of these cells. These data are presented and discussed in the context of the activation of the Raf-MEK-ERK cascade acting to modulate the activation and subcellular targeting of PDE4D gene products mediated by cAMP.  相似文献   

2.
Spatiotemporal regulation of protein kinase A (PKA) activity involves the manipulation of compartmentalized cAMP pools. Now we demonstrate that the muscle-selective A-kinase anchoring protein, mAKAP, maintains a cAMP signaling module, including PKA and the rolipram-inhibited cAMP-specific phosphodiesterase (PDE4D3) in heart tissues. Functional analyses indicate that tonic PDE4D3 activity reduces the activity of the anchored PKA holoenzyme, whereas kinase activation stimulates mAKAP-associated phosphodiesterase activity. Disruption of PKA- mAKAP interaction prevents this enhancement of PDE4D3 activity, suggesting that the proximity of both enzymes in the mAKAP signaling complex forms a negative feedback loop to restore basal cAMP levels.  相似文献   

3.
4.
《Cellular signalling》2014,26(11):2446-2459
Acrodysostosis without hormone resistance is a rare skeletal disorder characterized by brachydactyly, nasal hypoplasia, mental retardation and occasionally developmental delay. Recently, loss-of-function mutations in the gene encoding cAMP-hydrolyzing phosphodiesterase-4D (PDE4D) have been reported to cause this rare condition but the pathomechanism has not been fully elucidated. To understand the pathogenetic mechanism of PDE4D mutations, we conducted 3D modeling studies to predict changes in the binding efficacy of cAMP to the catalytic pocket in PDE4D mutants. Our results indicated diminished enzyme activity in the two mutants we analyzed (Gly673Asp and Ile678Thr; based on PDE4D4 residue numbering). Ectopic expression of PDE4D mutants in HEK293 cells demonstrated this reduction in activity, which was identified by increased cAMP levels. However, the cells from an acrodysostosis patient showed low cAMP accumulation, which resulted in a decrease in the phosphorylated cAMP Response Element-Binding Protein (pCREB)/CREB ratio. The reason for this discrepancy was due to a compensatory increase in expression levels of PDE4A and PDE4B isoforms, which accounted for the paradoxical decrease in cAMP levels in the patient cells expressing mutant isoforms with a lowered PDE4D activity. Skeletal radiographs of 10-week-old knockout (KO) rats showed that the distal part of the forelimb was shorter than in wild-type (WT) rats and that all the metacarpals and phalanges were also shorter in KO, as the name acrodysostosis implies. Like the G-protein α-stimulatory subunit and PRKAR1A, PDE4D critically regulates the cAMP signal transduction pathway and influences bone formation in a way that activity-compromising PDE4D mutations can result in skeletal dysplasia. We propose that specific inhibitory PDE4D mutations can lead to the molecular pathology of acrodysostosis without hormone resistance but that the pathological phenotype may well be dependent on an over-compensatory induction of other PDE4 isoforms that can be expected to be targeted to different signaling complexes and exert distinct effects on compartmentalized cAMP signaling.  相似文献   

5.
Vascular endothelial cell (VEC) permeability is largely dependent on the integrity of vascular endothelial cadherin (VE-cadherin or VE-Cad)-based intercellular adhesions. Activators of protein kinase A (PKA) or of exchange protein activated by cAMP (EPAC) reduce VEC permeability largely by stabilizing VE-Cad-based intercellular adhesions. Currently, little is known concerning the nature and composition of the signaling complexes that allow PKA or EPAC to regulate VE-Cad-based structures and through these actions control permeability. Using pharmacological, biochemical, and cell biological approaches we identified and determined the composition and functionality of a signaling complex that coordinates cAMP-mediated control of VE-Cad-based adhesions and VEC permeability. Thus, we report that PKA, EPAC1, and cyclic nucleotide phosphodiesterase 4D (PDE4D) enzymes integrate into VE-Cad-based signaling complexes in human arterial endothelial cells. Importantly, we show that protein-protein interactions between EPAC1 and PDE4D serve to foster their integration into VE-Cad-based complexes and allow robust local regulation of EPAC1-based stabilization of VE-Cad-based adhesions. Of potential translational importance, we mapped the EPAC1 peptide motif involved in binding PDE4D and show that a cell-permeable variant of this peptide antagonizes EPAC1-PDE4D binding and directly alters VEC permeability. Collectively, our data indicate that PDE4D regulates both the activity and subcellular localization of EPAC1 and identify a novel mechanism for regulated EPAC1 signaling in these cells.  相似文献   

6.
One of the defining properties of beta2-adrenergic receptor (beta(2)AR) signaling is the transient and rapidly reversed accumulation of cAMP. Here we have investigated the contribution of different PDE4 proteins to the generation of this transient response. To this aim, mouse embryonic fibroblasts deficient in PDE4A, PDE4B, or PDE4D were generated, and the regulation of PDE activity, the accumulation of cAMP, and CREB phosphorylation in response to isoproterenol were monitored. Ablation of PDE4D, but not PDE4A or PDE4B, had a major effect on the beta-agonist-induced PDE activation, with only a minimal increase in PDE activity being retained in PDE4D knock-out (KO) cells. Accumulation of cAMP was markedly enhanced, and the kinetics of cAMP accumulation were altered in their properties in PDE4DKO but not PDE4BKO cells. Modest effects were observed in PDE4AKO mouse embryonic fibroblasts. The return to basal levels of both cAMP accumulation and CREB phosphorylation was greatly delayed in the PDE4DKO cells, suggesting that PDE4D is critical for dissipation of the beta2AR stimulus. This effect of PDE4D ablation was in large part due to inactivation of a negative feedback mechanism consisting of the PKA-mediated activation of PDE4D in response to elevated cAMP levels, as indicated by experiments using the cAMP-dependent protein kinase inhibitors H89 and PKI. Finally, PDE4D ablation affected the kinetics of beta2AR desensitization as well as the interaction of the receptor with Galphai. These findings demonstrate that PDE4D plays a major role in shaping the beta2AR signal.  相似文献   

7.
8.
Human pulmonary artery smooth muscle cells (hPASM cells) express PDE4A10, PDE4A11, PDE4B2, PDE4C and PDE4D5 isoforms. Hypoxia causes a transient up-regulation of PDE4B2 that reaches a maximum after 7 days and sustained up-regulation of PDE4A10/11 and PDE4D5 over 14 days in hypoxia. Seven days in hypoxia increases both intracellular cAMP levels, protein kinase A (PKA) activity and activated, phosphorylated extracellular signal regulated kinase (pERK) but does not alter either PKA isoform expression or total cAMP phosphodiesterase-4 (PDE4) activity or cAMP phosphodiesterase-3 (PDE3) activity. Both the cyclooxygenase inhibitor, indomethacin and the ERK inhibitors, UO126 and PD980589 reverse the hypoxia-induced increase in intracellular cAMP levels back to those seen in normoxic hPASM cells. Challenge of normoxic hPASM cells with prostaglandin E(2) (PGE(2)) elevates cAMP to levels comparable to those seen in hypoxic cells but fails to increase intracellular cAMP levels in hypoxic hPASM cells. The adenylyl cyclase activator, forskolin increases cAMP levels in both normoxic and hypoxic hPASM cells to comparable elevated levels. Challenge of hypoxic hPASM cells with indomethacin attenuates total PDE4 activity whilst challenge with UO126 increases total PDE4 activity. We propose that the hypoxia-induced activation of ERK initiates a phospholipase A(2)/COX-driven autocrine effect whereupon PGE(2) is generated, causing the activation of adenylyl cyclase and increase in intracellular cAMP. Despite the hypoxia-induced increases in the expression of PDE4A10/11, PDE4B2 and PDE4D5 and activation of certain of these long PDE4 isoforms through PKA phosphorylation, we suggest that the failure to see any overall increase in PDE4 activity is due to ERK-mediated phosphorylation and inhibition of particular PDE4 long isoforms. Such hypoxia-induced increase in expression of PDE4 isoforms known to interact with certain signalling scaffold proteins may result in alterations in compartmentalised cAMP signalling. The hypoxia-induced increase in cAMP may represent a compensatory protective mechanism against hypoxia-induced mitogens such as endothelin-1 and serotonin.  相似文献   

9.
Clear cell renal cell carcinoma (ccRCC) is the most lethal form of kidney cancer and effective treatment regimens are yet to be established. Tyrosine kinase inhibitors (TKI) have widely been used as ccRCC therapeutics, but their efficacy is limited due to accompanying resistance mechanisms. Previous studies have provided substantial evidence for crosstalk between cAMP and the MAPK/ERK signaling pathway. Low levels of intracellular cAMP have been found in several human malignancies and some data suggest that elevation of cAMP expression can be achieved by phosphodiesterase 4 (PDE4) inhibition, resulting in cell growth arrest and/or cell death. The effects of crosstalk between cAMP and the MAPK/ERK pathway on the development progression in ccRCR, however, remain to be fully understood. In this study, we sought to explore the involvement of PDE4 in ccRCC and to assess its potential as a target for therapeutic intervention. We demonstrated that PDE4D is the predominant subtype of PDE4 expressed in healthy and cancerous renal cell lines, particularly in metastatic Caki-1 cells. We generated a CRISPR/Cas9-mediated PDE4D-KO Caki-1 cell model and showed that PDE4D depletion reduced cell proliferation and recovered cAMP expression in these cells. PDE4D-KO and/or PDE4 inhibition with the FDA approved PDE4 inhibitor, roflumilast, also attenuated MAPK/ERK signaling in a CRAF-dependent manner. Most interestingly, we showed that PDE4D-KO enhanced the effectiveness of the TKI, sorafenib, to stunt cell survival. In conclusion, we provide preliminary evidence of PDE4 involvement in ccRCC and suggest a rationale for dual tyrosine kinase/PDE4D targeting in patients with CRAF-dependent MAPK activation.  相似文献   

10.
The mediation of cAMP effects by specific pools of protein kinase A (PKA) targeted to distinct subcellular domains raises the question of how inactivation of the cAMP signal is achieved locally and whether similar targeting of phosphodiesterases (PDEs) to sites of cAMP/PKA action could be observed. Here, we demonstrate that Sertoli cells of the testis contain an insoluble PDE4D3 isoform, which is shown by immunofluorescence to target to centrosomes. Staining of PDE4D and PKA shows co-localization of PDE4D with PKA-RIIalpha and RIIbeta in the centrosomal region. Co-precipitation of RII subunits and PDE4D3 from cytoskeletal extracts indicates a physical association of the two proteins. Distribution of PDE4D overlaps with that of the centrosomal PKA-anchoring protein, AKAP450, and AKAP450, PDE4D3, and PKA-RIIalpha co-immunoprecipitate. Finally, both PDE4D3 and PKA co-precipitate with a soluble fragment of AKAP450 encompassing amino acids 1710 to 2872 when co-expressed in 293T cells. Thus, a centrosomal complex that includes PDE4D and PKA constitutes a novel signaling unit that may provide accurate spatio-temporal modulation of cAMP signals.  相似文献   

11.
12.
Previous work has shown that the protein kinase A (PKA)-regulated phosphodiesterase (PDE) 4D3 binds to A kinase-anchoring proteins (AKAPs). One such protein, AKAP9, localizes to the centrosome. In this paper, we investigate whether a PKA-PDE4D3-AKAP9 complex can generate spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. Real-time imaging of fluorescence resonance energy transfer reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a consequence of increased autophosphorylation of its regulatory subunit at S114. Finally, disruption of the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell cycle progression as a result of accumulation of cells in prophase. Our findings describe a novel mechanism of PKA activity regulation that relies on binding to AKAPs and consequent modulation of the enzyme activation threshold rather than on overall changes in cAMP levels. Further, we provide for the first time direct evidence that control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals.  相似文献   

13.
Together with a transient accumulation of intracellular cAMP, thyrotropin (TSH) stimulation of the FRTL-5 thyroid cell induces phosphorylation and activation of a cAMP-specific phosphodiesterase (PDE4D3). Here we have investigated the impact of PDE4D3 activation on hormone responsiveness. Stimulation of FRTL-5 cells with TSH caused an increase in PDE activity within 3 min, with a maximal stimulation reached after 5 min. Preincubation with the protein kinase A (PKA) inhibitor H89 or (R(p))-cAMPS, but not with the inactive isomer H85, blocked this activation. Preincubation with PKA inhibitors also blocked the shift in mobility of the PDE4D3 protein. Under these conditions, H89, but not H85, potentiated the cAMP accumulation induced by TSH. Incubation of FRTL-5 cells with the PKA activator 8-(4-chlorophenylthio)adenosine-cAMP caused an increase in PDE activity and a decrease in the endogenous cAMP, confirming the presence of a PKA-PDE feedback loop. MA-10 Leydig tumor cells stably transfected with either a wild type PDE4D3 or a PDE4D3 with mutations in the PKA phosphorylation sites showed an increase in PDE activity when compared with control cells. Human choriogonadotropin or Bt(2)cAMP treatment induced a stimulation of PDE activity in cells transfected with wild type PDE4D3, whereas the activation was absent in mutant- and control-transfected cells. The increase in cAMP accumulation elicited by human choriogonadotropin was reduced in cells transfected with the wild type PDE4D3, but not in cells transfected with the mutant PDE. Rolipram, a specific inhibitor of PDE4, restored the cAMP accumulation in the PDE4D3-transfected cells. These data provide evidence that a rapid activation of PDE4D3 is one of the mechanisms determining the intensity of the cAMP signal.  相似文献   

14.
Incubation of cultured bovine vascular smooth muscle cells (VSMC) with forskolin increased cAMP as measured by an increase in cAMP-dependent protein kinase (PKA) activation (PKA ratio). Forskolin also produced a concentration- and time-dependent increase in activity (3–5-fold within 15 min) of a PDE4 (cAMP-specific cyclic nucleotide phosphodiesterase). The increase in PDE4 activity was not affected by cycloheximide and thus not likely due to increased synthesis of the enzyme. Activation, which was preserved during partial purification of the enzyme by chromatography on Sephacryl S-200 and MonoQ, was most likely due to a covalent modification. Incubation of cell homogenates with the catalytic subunit of PKA (PKAc) induced a ∼5-fold activation of PDE4 with a time course similar to that in intact cells after forskolin addition. The forskolin-mediated activation was reversed during incubation of homogenates at room temperature for two hours. Addition of PKAc resulted in rapid reactivation of PDE4. These data are consistent with the hypothesis that rapid, reversible activation of PDE4 in cultured VSMC is mediated by PKA.  相似文献   

15.
16.
PDE4B and PDE4D provide >90% of PDE4 cAMP phosphodiesterase activity in human embryonic kidney (HEK293B2) cells. Their selective small interference RNA (siRNA)-mediated knockdown potentiates isoprenaline-stimulated protein kinase A (PKA) activation. Whereas endogenous PDE4D co-immunoprecipitates with beta arrestin, endogenous PDE4B does not, even upon PDE4D knockdown. Ectopic overexpression of PDE4B2 confers co-immunoprecipitation with beta arrestin. Knockdown of PDE4D, but not PDE4B, amplifies isoprenaline-stimulated phosphorylation of the beta2-adrenergic receptor (beta2-AR) by PKA and activation of extracellular signal-regulated kinase (ERK) through G(i). Isoform-selective knockdown identifies PDE4D5 as the functionally important species regulating isoprenaline stimulation of both these processes. Ht31-mediated disruption of the tethering of PKA to AKAP scaffold proteins attenuates isoprenaline activation of ERK, even upon PDE4D knockdown. Selective siRNA-mediated knockdown identifies AKAP79, which is constitutively associated with the beta2-AR, rather than isoprenaline-recruited gravin, as being the functionally relevant AKAP in this process. Isoprenaline-stimulated membrane recruitment of PDE4D is ablated upon beta arrestin knockdown. A mutation that compromises interactions with beta arrestin prevents catalytically inactive PDE4D5 from performing a dominant negative role in potentiating isoprenaline-stimulated ERK activation. Beta arrestin-recruited PDE4D5 desensitizes isoprenaline-stimulated PKA phosphorylation of the beta2-AR and the consequential switching of its signaling to ERK. The ability to observe a cellular phenotype upon PDE4D5 knockdown demonstrates that other PDE4 isoforms, expressed at endogenous levels, are unable to afford rescue in HEK293B2 cells.  相似文献   

17.
cAMP-specific PDE (phosphodiesterase) 4 isoforms underpin compartmentalized cAMP signalling in mammalian cells through targeting to specific signalling complexes. Their importance is apparent as PDE4 selective inhibitors exert profound anti-inflammatory effects and act as cognitive enhancers. The p38 MAPK (mitogen-activated protein kinase) signalling cascade is a key signal transduction pathway involved in the control of cellular immune, inflammatory and stress responses. In the present study, we show that PDE4A5 is phosphorylated at Ser147, within the regulatory UCR1 (ultraconserved region 1) domain conserved among PDE4 long isoforms, by MK2 (MAPK-activated protein kinase 2, also called MAPKAPK2). Phosphorylation by MK2, although not altering PDE4A5 activity, markedly attenuates PDE4A5 activation through phosphorylation by protein kinase A. This modification confers the amplification of intracellular cAMP accumulation in response to adenylate cyclase activation by attenuating a major desensitization system to cAMP. Such reprogramming of cAMP accumulation is recapitulated in wild-type primary macrophages, but not MK2/3-null macrophages. Phosphorylation by MK2 also triggers a conformational change in PDE4A5 that attenuates PDE4A5 interaction with proteins whose binding involves UCR2, such as DISC1 (disrupted in schizophrenia 1) and AIP (aryl hydrocarbon receptor-interacting protein), but not the UCR2-independent interacting scaffold protein β-arrestin. Long PDE4 isoforms thus provide a novel node for cross-talk between the cAMP and p38 MAPK signalling systems at the level of MK2.  相似文献   

18.
19.
20.
The spatiotemporal regulation of cAMP can generate microdomains just beneath the plasma membrane where cAMP increases are larger and more dynamic than those seen globally. Real-time measurements of cAMP using mutant cyclic nucleotide-gated ion channel biosensors, pharmacological tools and RNA interference (RNAi) were employed to demonstrate a subplasmalemmal cAMP signaling module in living cells. Transient cAMP increases were observed upon stimulation of HEK293 cells with prostaglandin E1. However, pretreatment with selective inhibitors of type 4 phosphodiesterases (PDE4), protein kinase A (PKA) or PKA/A-kinase anchoring protein (AKAP) interaction blocked an immediate return of subplasmalemmal cAMP to basal levels. Knockdown of specific membrane-associated AKAPs using RNAi identified gravin (AKAP250) as the central organizer of the PDE4 complex. Co-immunoprecipitation confirmed that gravin maintains a signaling complex that includes PKA and PDE4D. We propose that gravin-associated PDE4D isoforms provide a means to rapidly terminate subplasmalemmal cAMP signals with concomitant effects on localized ion channels or enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号