首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Clerid beetles are common natural enemies of bark beetles, and could potentially be used as biological control agents if they could be reared in sufficient numbers. We developed an artificial diet devoid of insect components for rearing Thanasimus dubius (Fabricius), a clerid that attacks several economically important bark beetles in eastern North America. We reared larvae of this predator using the artificial diet, and then used either natural or factitious prey to feed the adults so produced. Two different methods of presenting the diet were also examined. We then compared the performance of T. dubius reared on the artificial diet with newly-emerged wild individuals collected from the field. Our results suggest that adult predators reared on the diet are near in quality to wild ones, and high R0 values can be obtained. No difference in prey preference was found between wild and diet-reared individuals after five generations in the laboratory. Sufficient numbers of predators could be generated using these techniques to permit limited field trials of augmentative biological control.  相似文献   

2.
Abstract 1 One proposed approach to improving biological control of bark beetles (Coleoptera: Scolytidae; alt. Curculionidae: Scolytinae) is to manipulate predator movement using semiochemicals. However, selective manipulation is impeded by attraction of both predators and pests to bark beetle pheromones. 2 The primary bark beetle affecting pine plantations in Wisconsin, U.S.A., is the pine engraver, Ips pini (Say). Other herbivores include Ips grandicollis (Eichhoff) and Dryophthorus americanus Bedel (Curculionidae). The predominant predators are the beetles Thanasimus dubius (Cleridae) and Platysoma cylindrica (Histeridae). 3 We conducted field assays using two enantiomeric ratios of ipsdienol, and frontalin plus α‐pinene. Ipsdienol is the principal pheromone component of I. pini, and frontalin is produced by a number of Dendroctonus species. α‐Pinene is a host monoterpene commonly incorporated into commercial frontalin lures. 4 Thanasimus dubius was attracted to frontalin plus α‐pinene, and also to racemic ipsdienol. By contrast, I. pini was attracted to racemic ipsdienol, but showed no attraction to frontalin plus α‐pinene. Platysoma cylindrica was attracted to 97%‐(–)‐ipsdienol and, to a lesser extent, racemic ipsdienol, but not to frontalin plus α‐pinene. Ips grandicollis was attracted to frontalin plus α‐pinene but not to ipsdienol. Dryophthorus americanus was attracted to both ipsdienol and frontalin plus α‐pinene. 5 This ability to selectively attract the predator T. dubius without attracting the principal bark beetle in the system, I. pini, provides new opportunities for research into augmentative biological control and basic population dynamics. Moreover, the attraction of T. dubius, but not P. cylindrica, to frontalin plus α‐pinene creates opportunities for selective manipulation of just one predator. 6 Patterns of attraction by predators and bark beetles to these compounds appear to reflect various degrees of geographical and host tree overlap with several pheromone‐producing species.  相似文献   

3.
Summary Olfactory receptor cells of the spruce bark beetle,Ips typographus, and its predator, the clerid beetleThanasimus formicarius, were studied using electrophysiological techniques. Recordings were made of nerve impulses from single cells and of the summated receptor potential (electroantennogram).Information from bark beetle pheromones and host volatiles is detected by separate olfactory receptor cells inI. typographus. Those which detected bark beetle pheromones responded to only one key substance. Some receptor cells which responded to spruce bark volatiles were strongly activated by one of the synthetic host compounds tested. However, too few host compounds were tested to reach definite conclusions about the specialization of host odour cells. T. formicarius has evolved olfactory receptor cells for bark beetle pheromones. These have similar specificities (specialist types) to those of the bark beetles. Furthermore, the predator has olfactory receptor cells for many bark beetle pheromones. This indicates thatT. formicarius is able to detect and discriminate between many bark beetle species. No significant differences were found between prey and predator cells which responded to host volatiles.  相似文献   

4.
The behavior of 118 spruce bark beetles, Ips typographus,was observed on trees under colonization. Most individuals were followed from when they landed until they entered or left the tree. Both males and females spent most time inspecting crevices and searching for a place to start boring or for a hole to enter. These behaviors accounted for 87 and 70% of all behavioral acts recorded for males and females, respectively. Females entered galleries with males only after a period of pushing at the gallery entrance. Males spent on average 3 min and females 4 min on the bark before entering or leaving the tree. Thirty-three percent of the beetles eventually entered the tree, 31% flew away, 35% dropped from the host, and one beetle was eaten by a predator. The results are discussed in relation to the question of mate choice in bark beetles and to studies on attack dynamics of spruce bark beetle populations.  相似文献   

5.
Bark beetle population dynamics is thought to be primarily driven by bottom‐up forces affecting insect performance and host tree resistance. Although there are theoretical predictions and empirical evidences that predation and parasitism may play an important role in driving bark beetle population fluctuations, long‐term studies testing the role of both biotic and abiotic controls on population dynamics are still rare. The aim of the study was to quantify the relative importance of predation, negative density feedback and abiotic factors in driving Ips typographus population dynamics. We analyzed a unique time series of population density of I. typographus and its main predator Thanasimus formicarius over almost two decades in four regions across Sweden. We used a discrete population model and a multi‐model inference approach to evaluate the importance of both bottom up and top down factors. We found that availability of breeding substrates in the form of storm‐felled trees was the main outbreak trigger, while strong intra‐specific competition for host trees was the main endogenous regulating factor. Although temperature‐related metrics are known to have strong individual effect on I. typographus development and number of generations, they did not emerge as important drivers of population dynamics. A positive effect of low summer rainfall was evident only in the region located in the southernmost and warmest part of the spruce distribution range in Sweden. Predator density did not emerge as an important prey regulating factor. As the reported damage from storms seems to have increased across whole Europe, spruce forests are expected to be increasingly susceptible to large outbreaks of I. typographus with important economic and ecological consequences for boreal ecosystems. However, the observed negative density feedback seems to be a natural regulating mechanism that impedes a strong long‐term propagation of the outbreaks.  相似文献   

6.
7.
Abstract 1 Host plant terpenes can influence attraction of conifer bark beetles to their aggregation pheromones: both synergistic and inhibitory compounds have been reported. However, we know little about how varying concentrations of individual monoterpenes affect responses. 2 We tested a gradient of ratios of α‐pinene, the predominant monoterpene in host pines in the Great Lakes region of North America, to Ips pini's pheromone, racemic ipsdienol plus lanierone. 3 Ips pini demonstrated a parabolic response, in which low concentrations of α‐pinene had no effect on attraction to its pheromone, intermediate concentrations were synergistic and high concentrations were inhibitory. These results suggest optimal release rates for population monitoring and suppression programmes. 4 Inhibition of bark beetle attraction to pheromones may be an important component of conifer defences. At terpene to pheromone ratios emulating emissions from trees actively responding to a first attack, arrival of flying beetles was low. This may constitute an additional defensive role of terpenes, which are also toxic to bark beetles at high concentrations. 5 Reduced attraction to a low ratio of α‐pinene to pheromone, as occurs when colonization densities become high and the tree's resin is largely depleted, might reflect a mechanism for preventing excessive crowding. 6 Thanasimus dubius, the predominant predator of I. pini, was also attracted to ipsdienol plus lanierone, but its response differed from that of its prey. Attraction increased across all concentrations of α‐pinene. This indicates that separate lures are needed to sample both predators and bark beetles effectively. It also provides an opportunity for maximizing pest removal while reducing adverse effects on beneficial species. This disparity further illustrates the complexity confronting natural enemies that track chemical signals to locate herbivores.  相似文献   

8.
Control measures aiming at reducing bark beetle populations and preserving their natural enemies require a sound knowledge on their overwintering and emergence behaviour. These behavioural traits were investigated in univoltine and bivoltine populations of the European spruce bark beetle (Ips typographus [L.], Coleoptera: Scolytinae) and its predators and parasitoids over several consecutive years. In univoltine populations, roughly 50% of the bark beetles left their brood trees in fall together with most parasitoids and some significant predatory flies and beetles. In bivoltine populations, <10% of the second bark beetle generation emerged in fall and the remainder overwintered under the bark of their brood trees. Likewise, most predatory beetles and flies spent wintertime with their prey under the bark, while most parasitic wasps emerged in fall. The spring emergence of bivoltine predatory beetles was found to occur up to 3 weeks earlier than that of I. typographus, while that of the predatory flies and the parasitoids was delayed by up to 1 month. In univoltine populations, the bark beetles emerged several weeks prior to most antagonistic taxa. In the heat year 2003, three I. typographus generations were produced at the lower location, 36% of the third generation emerged in fall, while the proportions of overwintering predators remained largely the same as in previous years. Similar to their host, more parasitoids left their brood trees in fall after warm years. The results show that sanitation felling during winter probably kills most bark beetles in bivoltine populations, but also eliminates many natural enemies. In univoltine populations, sanitation felling might be less detrimental to both I. typographus and natural enemies because a fair fraction of their populations will already have left the trees before cutting. Warmer climates may affect the interactions of bark beetles and natural enemies and thus the impact of control measures.  相似文献   

9.
Fires are among the most globally important disturbances in forest ecosystems. Forest fires can be followed by bark beetle outbreaks. Therefore, the dynamic interactions between bark beetle outbreaks and fire appear to be of general importance in coniferous forests throughout the world. We tested three hypotheses of how forest fires in pine ecosystems (Pinus pinaster Alton and P. radiata D. Don) in Spain could alter the population dynamics of bark beetles and influence the probability of further disturbance from beetle outbreaks: fire could affect the antiherbivore resin defenses of trees, change their nutritional suitability, or affect top-down controls on herbivore populations. P. radiata defenses decreased immediately after fire, but trees with little crown damage soon recovered with defenses higher than before. Fire either reduced or did not affect nutritional quality of phloem and either reduced or had no effect on the abundance, diversity, and relative biomass of natural enemies. After fire, bark beetle abundance increased via rapid aggregation of reproductive adults on scorched trees. However, our results indicate that for populations to increase to an outbreak situation, colonizing beetles must initiate attacks before tree resin defenses recover, host trees must retain enough undamaged phloem to facilitate larval development, and natural enemies should be sufficiently rare to permit high beetle recruitment into the next generation. Coincidence of these circumstances may promote the possibility of beetle populations escaping to outbreak levels.  相似文献   

10.
Aukema BH  Clayton MK  Raffa KF 《Oecologia》2004,139(3):418-426
Multiple predator species feeding on a common prey can lead to higher or lower predation than would be expected by simply combining their individual effects. Such emergent multiple predator effects may be especially prevalent if predators share feeding habitat. Despite the prevalence of endophagous insects, no studies have examined how multiple predators sharing an endophytic habitat affect prey or predator reproduction. We investigated density-dependent predation of Thanasimus dubius (Coleoptera: Cleridae) and Platysoma cylindrica (Coleoptera: Histeridae) on a bark beetle prey, Ips pini (Coleoptera: Scolytidae), in a laboratory assay. I. pini utilize aggregation pheromones to group-colonize and reproduce within the stems of conifers. T. dubius and P. cylindrica exploit these aggregation pheromones to arrive simultaneously with the herbivore. Adult T. dubius prey exophytically, while P. cylindrica adults enter and prey within the bark beetle galleries. Larvae of both predators prey endophytically. We used a multiple regression analysis, which avoids confounding predator composition with density, to examine the effects of varying predator densities alone and in combination on herbivore establishment, herbivore reproduction, and predator reproduction. Predators reduced colonization success by both sexes, and decreased I. pini reproduction on a per male and per female basis. The combined effects of these predators did not enhance or reduce prey establishment or reproduction in unexpected manners, and these predators were entirely substitutable. The herbivores net replacement rate was never reduced significantly below one at prey and predator densities emulating field conditions. Similar numbers of each predator species emerged from the logs, but predator reproduction suffered from high intraspecific interference. The net replacement rate of P. cylindrica was not affected by conspecifics or T. dubius. In contrast, the net replacement rate of T. dubius decreased with the presence of conspecifics or P. cylindrica. Combinations of both predators led to an emergent effect, a slightly increased net replacement rate of T. dubius. This may have been due to predation by larval T. dubius on pupal P. cylindrica, as P. cylindrica develops more rapidly than T. dubius within this shared habitat.  相似文献   

11.
1 The emergence pattern of Thanasimus dubius (F.) (Coleoptera: Cleridae), a common predator of the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), was studied under field conditions across different seasons. A simple statistical model was then developed to characterize the emergence data, using the truncated geometric distribution. Data are also presented on the mortality of T. dubius eggs at various temperatures and humidities in an effort to explain certain aspects of emergence behaviour. 2 Emergence of T. dubius from a given tree usually occurred in several discrete episodes across a two‐year period, with most individuals emerging in spring or autumn. Almost no emergence occurred in July and August, which may be an adaptation to avoid high temperature mortality. Emergence patterns appeared similar across seasons, with the time of year serving mainly to shift the pattern through time. 3 Cycles in D. frontalis abundance may be the result of delayed density dependence generated by its natural enemy complex. The predator T. dubius is likely to be an important component of this delayed density dependence, because of its lengthy development time and apparent impact on D. frontalis.  相似文献   

12.
13.
  • 1 Quantifying dispersal in predator–prey systems can improve our understanding of how these species interact in space and time, as well as their relative distributions across complex landscapes.
  • 2 We measured the dispersal abilities of three forest insects associated with red pine decline: the eastern five spined pine engraver Ips grandicollis (Coleoptera: Curculionidae), its main predator Thanasimus dubius (Coleoptera: Cleridae) and the basal stem and root colonizer Dendroctonus valens (Coleoptera: Curculionidae). We also examined the edge behaviours of these species and the predator Platysoma spp (Coleoptera: Histeridae) between red pine stands (habitat) and clearings (nonhabitat).
  • 3 Thanasimus dubius dispersed 12 times farther than its prey I. grandicollis, with 50% of predators dispersing farther than 1.54 km. This profound difference in dispersal behaviour between prey and predator may contribute to the clumped distribution of I. grandicollis.
  • 4 Most T. dubius and D. valens were confined in the pine forest, thus showing strong edge behaviour. This differed from I. grandicollis and Platysoma spp., which were commonly found in open areas adjacent to red pine plantations.
  • 5 The bark beetle I. grandicollis and one of its main predators, T. dubius, exhibited different patterns of movement within a fragmented landscape. Despite a greater dispersal ability of T. dubius within forests, the spatial distribution of this predator may be restricted by fragmentation of its habitat, and provide an opportunity for partial escape of its prey.
  • 6 The present study contributes to our knowledge of top‐down forces within red pine stands undergoing decline. Differences of dispersal patterns and edge behaviour could contribute to the initiation of new pockets of decline, as well as the connectedness among existing ones.
  相似文献   

14.
Climate change has amplified eruptive bark beetle outbreaks over recent decades, including spruce beetle (Dendroctonus rufipennis). However, for projecting future bark beetle dynamics there is a critical lack of evidence to differentiate how outbreaks have been promoted by direct effects of warmer temperatures on beetle life cycles versus indirect effects of drought on host susceptibility. To diagnose whether drought‐induced host‐weakening was important to beetle attack success we used an iso‐demographic approach in Engelmann spruce (Picea engelmannii) forests that experienced widespread mortality caused by spruce beetle outbreaks in the 1990s, during a prolonged drought across the central and southern Rocky Mountain region. We determined tree death date demography during this outbreak to differentiate early‐ and late‐dying trees in stands distributed across a landscape within this larger regional mortality event. To directly test for a role of drought stress during outbreak initiation we determined whether early‐dying trees had greater sensitivity of tree‐ring carbon isotope discrimination (?13C) to drought compared to late‐dying trees. Rather, evidence indicated the abundance and size of host trees may have modified ?13C responses to drought. ?13C sensitivity to drought did not differ among early‐ versus late‐dying trees, which runs contrary to previously proposed links between spruce beetle outbreaks and drought. Overall, our results provide strong support for the view that irruptive spruce beetle outbreaks across North America have primarily been driven by warming‐amplified beetle life cycles whereas drought‐weakened host defenses appear to have been a distant secondary driver of these major disturbance events.  相似文献   

15.
The southern pine beetle, Dendroctonus frontalis (Coleoptera: Curculionidae) (SPB), is known to be a major bark beetle pest of pines throughout the southeastern United States. A common predator of bark beetles, Thanasimus dubius (Coleoptera: Cleridae), has been suggested to play a prevalent role on SPB dynamics. Evaluations of T. dubius have been limited by rearing methods; an artificial diet for larval T. dubius exists, and preservatives such as sorbic acid could help to maximize diet shelf-life and enhance the efficiency of the rearing system. The effects of sorbic acid at different concentrations (0%, 0.1% and 0.2%) in the larval diet for T. dubius were measured, and the effects of increased feeding time intervals (2-3 vs. 5 days) on predator performance evaluated. In addition, an experimental bioassay was conducted where newly hatched T. dubius larvae were released at four densities (0, 50, 100, and 200 per log) on pine logs infested by SPB. Sorbic acid in the diet reduced female fecundity (by 20-40%), but did not affect adult T. dubius size or longevity. However, using this preservative may not be necessary because it had no effect on the overall efficiency of the rearing system, while refreshing the larval diet every 5 days (compared with 2-3 days) did improve its efficiency, even without sorbic acid. The release of larval T. dubius resulted in a highly significant effect on the SPB ratio of increase (RI). This experiment was facilitated by the improvements in our rearing methods.  相似文献   

16.
Grosmannia clavigera is a fungal pathogen of pine forests in western North America and a symbiotic associate of two sister bark beetles: Dendroctonus ponderosae and D. jeffreyi. This fungus and its beetle associate D. ponderosae are expanding in large epidemics in western North America. Using the fungal genome sequence and gene annotations, we assessed whether fungal isolates from the two beetles inhabiting different species of pine in epidemic regions of western Canada and the USA, as well as in localized populations outside of the current epidemic, represent different genetic lineages. We characterized nucleotide variations in 67 genomic regions and selected 15 for the phylogenetic analysis. Using concordance of gene genealogies and distinct ecological characteristics, we identified two sibling phylogenetic species: Gc and Gs. Where the closely related Pinus ponderosa and P. jeffreyi are infested by localized populations of their respective beetles, Gc is present. In contrast, Gs is an exclusive associate of D. ponderosae mainly present on its primary host‐tree P. contorta; however, in the current epidemic areas, it is also found in other pine species. These results suggest that the host‐tree species and the beetle population dynamics may be important factors associated with the genetic divergence and diversity of fungal partners in the beetle‐tree ecosystems. Gc represents the original G. clavigera holotype, and Gs should be described as a new species.  相似文献   

17.
Aukema BH  Raffa KF 《Oecologia》2004,138(2):253-258
Bark beetles engage in one of the most pronounced examples of group procurement of defended plants. Their aggregation pheromones attract both sexes and are essential to overcome constitutive and rapidly inducible lethal defenses. The relative benefits to senders versus receivers of these signals are only partly understood. Because the initial stage of host entry can be hazardous, there may be benefit to a cheating strategy, whose practitioners respond to pheromones but do not engage in host searching. Several disadvantages to cheating have been proposed, but the role of predators has not been considered. Predators exploit bark beetle pheromones to locate prey, accumulate at the breeding site, and consume adult bark beetles before they enter the tree. Preliminary experiments quantified arrival patterns in the field. We used a laboratory assay to investigate relative predation on pioneers (those that initially select and enter hosts) and responders (those that arrive at a host in response to pheromones) during host colonization. Our model system utilized the pine engraver, Ips pini, which exhibits male harem polygamy. We allowed male I. pini to colonize host tissue and added females 1 day later. Also 1 day later, we variably added additional males and predacious checkered beetles, Thanasimus dubius. These treatments included two densities of males and three densities of predators that were selected to emulate field conditions. Responding males experienced higher predation than pioneers. T. dubius ate more males than females, independent of the presence or absence of responding males. T. dubius affected the distribution of females per male, although the number of females that survived to construct ovipositional galleries was constant. We discuss the viability of cheating, implications for biological control, and predator-prey coevolution in this cooperative, group-colonizing herbivore.  相似文献   

18.
1 A field experiment was carried out to test the hypothesis that treatment of Norway spruce trees with the Ips typographus-transmitted blue-stain fungus Ceratocystis polonica enhances tree resistance to later mass attack by this bark beetle. 2 Twenty-five mature trees were pretreated by inoculating a non-lethal dose of the fungus into the bark, while 18 trees served as untreated controls. Three and a half weeks after treatment a bark beetle attack was initiated by attaching dispensers with I. typographus pheromone to the tree trunks. 3 A significantly larger proportion (67%) of the control trees than of the pretreated trees (36%) were killed by the beetle attack. The result is discussed in relation to recent results regarding defence mechanisms in Norway spruce trees.  相似文献   

19.
Alternative environmentally friendly methods for pest control are in high demand because of the environmental impacts of pesticides. Notably, predator-released kairomone is a natural compound released by natural enemies, which mediates non-consumptive effects between natural enemies and prey. However, this novel pest control agent is underutilized relative to pesticides and natural enemies. Additionally, the effects of spraying predator kairomone on the number and diversity of arthropods in fields and whether this method is environmental-friendly are poorly understood. In the present study, a predator kairomone, rove beetle (Paederus fuscipes Curtis) abdominal gland secretion (AGS), was sprayed in rice fields to investigate whether AGS can suppress pest populations or will affect the fields’ arthropod communities. After AGS spraying, the abundance of arthropods decreased throughout the first 12-d period, including arthropod pests such as hemipterans (small brown planthopper, Laodelphax striatellus (Fallén), brown planthopper, Nilaparvata lugens (Stål), white-backed planthopper, Sogatella furcifera (Horváth), and leafhoppers), and lepidopterans (rice leaf folder, Cnaphalocrocis medinalis Guenée). The abundance of arthropod predators was not affected, except for predatory spiders, which decreased, and rove beetles (P. fuscipes), which increased. In the terms of arthropod diversity, neither pests nor their natural enemies were changed by AGS application. This work highlights that predator kairomone can temporarily suppress pest populations in fields but has no adverse effects on arthropod diversity; thus, this approach is environmentally friendly and can be used in real-world applications. Broadly, present studies suggest that the application of predator kairomone may have synergistic or cumulative effects on pest suppression.  相似文献   

20.
Geosmithia spp. (Ascomycota: Hypocreales) are little-studied, dry-spored fungi that occur in galleries built by many phloeophagous bark beetles. This study mapped the distribution and environmental preferences of Geosmithia species occurring in galleries of temperate European bark beetles. One hundred seven host tree samples of 16 tree species infested with 23 subcortical insect species were collected from across Europe during the years 1997–2005. Over 600 Geosmithia isolates from the beetles were sorted into 17 operational taxonomic units (OTUs) based on their phenotype similarity and phylogeny of internal transcribed spacer (ITS) region of rDNA (ITS1-5.8S-ITS2). The OTUs represent six known species and eight undescribed taxa. Ninety-two samples infested with subcortical insects were characterized by the presence/absence of OTUs and the similarity among the samples was evaluated. Geographically distant populations of the same beetle species host relatively uniform Geosmithia communities across large geographic areas (ranging from southern Bulgaria to the Czech Republic). This suggests effective dispersal of Geosmithia spp. by bark beetles. Clustering of similar samples in ordination analysis is correlated predominantly with the isolation source (bark beetles and their respective feeding plant), but not with their geographical origin. The composition of the Geosmithia OTU community of each bark beetle species depends on the degree of isolation of the species’ niches. Thus, Geosmithia communities associated with regularly co-occurring bark beetle species are highly similar. The similarity decreases with decreasing frequency of beetle species’ co-occurrence, a pattern resembling that of entomochoric ophiostomatoid fungi. These findings suggest that: 1) communities of Geosmithia spp. are vector-specific; 2) at least in some cases, the association between Geosmithia OTUs and bark beetles may have been very stable and symbioses are likely to be a fundamental factor in the speciation of Geosmithia fungi; and 3) that even nonsticky spores of Geosmithia are suitable for maintaining an insect–fungus association, contrary to previous hypotheses. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号