首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
fused (fu) is a segment-polarity gene encoding a putative serine-threonine kinase. In a wild-type context, all fu mutations display the same set of phenotypes. Nevertheless, mutations of the Suppressor of fused [Su(fu)] gene define three classes of alleles (fu0, fuI, fuII). Here, we report the molecular analysis of known fu mutations and the generation of new alleles by in vitro mutagenesis. We show that the Fused (Fu) protein functions in vivo as a kinase. The N-terminal kinase and the extreme C-terminal domains are necessary for Fu(+) activity while a central region appears to be dispensable. We observe a striking correlation between the molecular lesions of fu mutations and the phenotype displayed in their interaction with Su(fu). Indeed, fuI alleles which are suppressed by Su(fu) mutations are defined by inframe alterations of the N-terminal catalytic domain whereas the C-terminal domain is missing or altered in all fuII alleles. An unregulated FuII protein, which can be limited to the 80 N-terminal amino acids of the kinase domain, would be responsible for the neomorphic costal-2 phenotype displayed by the fuII-Su(fu) interaction. We propose that the Fu C-terminal domain can differentially regulate the Fu catalytic domain according to cell position in the parasegment.  相似文献   

4.
Expression of ExoU by Pseudomonas aeruginosa is correlated with acute cytotoxicity in a number of epithelial and macrophage cell lines. In vivo, ExoU is responsible for epithelial injury. The absence of a known motif or significant homology with other proteins suggests that ExoU may possess a new mechanism of toxicity. To study the intracellular effects of ExoU, we developed a transient-transfection system in Chinese hamster ovary cells. Transfection with full-length but not truncated forms of ExoU inhibited reporter gene expression. Inhibition of reporter activity after cotransfection with ExoU-encoding constructs was correlated with cellular permeability and death. The toxicity of truncated versions of ExoU could be restored by coexpression of the remainder of the molecule from separate plasmids in trans. This strategy was used to map N- and C-terminal regions of ExoU that are necessary but not sufficient for toxicity. Disruption of a middle region of the protein reduces toxicity. This portion of the molecule is postulated to allow the N- and C-terminal regions to functionally complement one another. In contrast to ExoS and ExoT, native and recombinant ExoU molecules do not oligomerize or form aggregates. The complex domain structure of ExoU suggests that, like other P. aeruginosa-encoded type III effectors (ExoS and ExoT), ExoU toxicity may result from a molecule that possesses more than one activity.  相似文献   

5.
Cdc31p is the yeast homologue of centrin, a highly conserved calcium-binding protein of the calmodulin superfamily. Previously centrins have been implicated only in microtubule-based processes. To elucidate the functions of yeast centrin, we carried out a two-hybrid screen for Cdc31p-interacting proteins and identified a novel essential protein kinase of 1,080 residues, Kic1p (kinase that interacts with Cdc31p). Kic1p is closely related to S. cerevisiae Ste20p and the p-21– activated kinases (PAKs) found in a wide variety of eukaryotic organisms. Cdc31p physically interacts with Kic1p by two criteria; Cdc31p coprecipitated with GST–Kic1p and it bound to GST–Kic1p in gel overlay assays. Furthermore, GST–Kic1p exhibited in vitro kinase activity that was CDC31-dependent. Although kic1 mutants were not defective for spindle pole body duplication, they exhibited a variety of mutant phenotypes demonstrating that Kic1p is required for cell integrity. We also found that cdc31 mutants, previously identified as defective for spindle pole body duplication, exhibited lysis and morphological defects. The cdc31 kic1 double mutants exhibited a drastic reduction in the range of permissive temperature, resulting in a severe lysis defect. We conclude that Kic1p function is dependent upon Cdc31p both in vivo and in vitro. We postulate that Cdc31p is required both for SPB duplication and for cell integrity/morphogenesis, and that the integrity/morphogenesis function is mediated through the Kic1p protein kinase.  相似文献   

6.
Small molecule inhibitors of protein kinases have become highly popular tools in signal transduction research, despite the fact that rather limited data about their respective selectivities have been available. We established an efficient chemical proteomics method to characterize the cellular targets of the widely used inhibitor SB203580, which was deemed to be rather specific for p38 kinase. Our results revealed several protein kinases as high affinity targets of SB 203580 and therefore imply a far more complicated cellular mode of action of this inhibitor than previously assumed. This raises the important question whether a lack of selectivity is inherent to many other “specific” inhibitors of protein kinases and warrants their evaluation employing experimental approaches adapted from our described proteomic technique.  相似文献   

7.
8.
9.
The members of the MCM protein family are essential eukaryotic DNA replication factors that form a six-member protein complex. In this study, we use antibodies to four MCM proteins to investigate the structure of and requirements for the formation of fission yeast MCM complexes in vivo, with particular regard to Cdc19p (MCM2). Gel filtration analysis shows that the MCM protein complexes are unstable and can be broken down to subcomplexes. Using coimmunoprecipitation, we find that Mis5p (MCM6) and Cdc21p (MCM4) are tightly associated with one another in a core complex with which Cdc19p loosely associates. Assembly of Cdc19p with the core depends upon Cdc21p. Interestingly, there is no obvious change in Cdc19p-containing MCM complexes through the cell cycle. Using a panel of Cdc19p mutants, we find that multiple domains of Cdc19p are required for MCM binding. These studies indicate that MCM complexes in fission yeast have distinct substructures, which may be relevant for function.  相似文献   

10.
  1. Download : Download high-res image (415KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
Protein kinases are important mediators of signal transduction in eukaryotic cells, and identifying the substrates of these enzymes is essential for a complete understanding of most signaling networks. In this report, novel substrate-binding variants of the cAMP-dependent protein kinase (PKA) were used to identify substrate domains required for efficient phosphorylation in vivo. Most wild-type protein kinases, including PKA, interact only transiently with their substrates. The substrate domains identified were distal to the sites of phosphorylation and were found to interact with a C-terminal region of PKA that was itself removed from the active site. Only a small set of PKA alterations resulted in a stable association with substrates, and the identified residues were clustered together within the hydrophobic core of this enzyme. Interestingly, these residues stretched from the active site of the enzyme to the C-terminal substrate-binding domain identified here. This spatial organization is conserved among the entire eukaryotic protein kinase family, and alteration of these residues in a second, unrelated protein kinase also resulted in a stable association with substrates. In all, this study identified distal sites in PKA substrates that are important for recognition by this enzyme and suggests that the interaction of these domains with PKA might influence specific aspects of substrate binding and/or release.PROTEIN kinases are key mediators of signal transduction in all eukaryotic cells. Each protein kinase modifies a distinct set of substrates, and the biological consequences of activating any kinase are the result of the collective actions of these target proteins (Hunter 2000; Manning et al. 2002). The ability to identify substrates is therefore essential for a complete understanding of most signaling pathways. Unfortunately, this identification process tends to be difficult, and few physiologically relevant targets are known for most protein kinases (Manning and Cantley 2002; Johnson and Hunter 2005). This situation may be changing as a number of innovative approaches to this problem have been developed in recent years (reviewed in Ptacek and Snyder 2006; Deminoff and Herman 2007; Ubersax and Ferrell 2007).This article is focused on the cAMP-dependent protein kinase (PKA) from the budding yeast, Saccharomyces cerevisiae. The PKA enzyme is found in all eukaryotes and is one of the most intensely studied members of this protein family (Taylor et al. 2005). PKA was the first protein kinase structure to be described, and its structure has provided essential insights into the general organization and catalytic mechanism of these enzymes (Knighton et al. 1991; Smith et al. 1999). Subsequent work has illustrated the conserved nature of the protein kinase core and the different ways that the activity of these enzymes can be regulated (Hunter 2000; Huse and Kuriyan 2002; Kannan and Neuwald 2005). In S. cerevisiae, PKA activity is a key regulator of cell growth and the response to environmental stress (Toda et al. 1985; Thevelein and De Winde 1999; Herman 2002; Schneper et al. 2004). We are interested in understanding the role of PKA in these processes and have identified a number of substrates for this enzyme (Howard et al. 2003; Chang et al. 2004; Budovskaya et al. 2005; Deminoff et al. 2006). One of the approaches used for this identification took advantage of PKA variants that exhibit a stable binding to substrate proteins (Deminoff et al. 2006). This binding is novel as most wild-type protein kinases, including PKA, interact only transiently with their substrates (Manning and Cantley 2002). Interestingly, one of these PKA variants was altered at a residue that is conserved in all protein kinases, suggesting that it might be possible to generate substrate-binding versions of other enzymes in this family.These variants of PKA were used here to explore the nature of the protein kinase–substrate interaction. These studies identified substrate domains distal to the sites of phosphorylation that were required for efficient recognition by the wild-type PKA, both in vitro and in vivo. These substrate domains were found to interact with a C-terminal region of PKA that is itself removed from the active site of the enzyme. A systematic mutagenesis of PKA identified additional residues that, when altered, resulted in a stable association with substrates. These latter residues are in close proximity in the three-dimensional structure and may link the active site with this C-terminal substrate-binding domain of PKA. Finally, we show that similar alterations within a second protein kinase, the mammalian double-stranded RNA-dependent protein kinase (PKR), also led to an increased affinity for substrates. In all, the data suggest that the interactions described here may be generally important for protein kinase function and models that explain potential roles for these substrate domains are discussed.  相似文献   

13.
Bioactive phytochemicals can suppress the growth of malignant cells, and investigation of the mechanisms responsible can assist in the identification of novel therapeutic strategies for cancer therapy. Ginger has been reported to exhibit potent anti-cancer effects, although previous reports have often focused on a narrow range of specific compounds. Through a direct comparison of various ginger compounds, we determined that gingerenone A selectively kills cancer cells while exhibiting minimal toxicity toward normal cells. Kinase array screening revealed JAK2 and S6K1 as the molecular targets primarily responsible for gingerenone A-induced cancer cell death. The effect of gingerenone A was strongly associated with relative phosphorylation levels of JAK2 and S6K1, and administration of gingerenone A significantly suppressed tumor growth in vivo. More importantly, the combined inhibition of JAK2 and S6K1 by commercial inhibitors selectively induced apoptosis in cancer cells, whereas treatment with either agent alone did not. These findings provide rationale for dual targeting of JAK2 and S6K1 in cancer for a combinatorial therapeutic approach.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, Sic1, an inhibitor of Clb-Cdc28 kinases, must be phosphorylated and degraded in G1 for cells to initiate DNA replication, and Cln-Cdc28 kinase appears to be primarily responsible for phosphorylation of Sic1. The Pho85 kinase is a yeast cyclin-dependent kinase (Cdk), which is not essential for cell growth unless both CLN1 and CLN2 are absent. We demonstrate that Pho85, when complexed with Pcl1, a G1 cyclin homologue, can phosphorylate Sic1 in vitro, and that Sic1 appears to be more stable in pho85Δ cells. Three consensus Cdk phosphorylation sites present in Sic1 are phosphorylated in vivo, and two of them are required for prompt degradation of the inhibitor. Pho85 and other G1 Cdks appear to phosphorylate Sic1 at different sites in vivo. Thus at least two distinct Cdks can participate in phosphorylation of Sic1 and may therefore regulate progression through G1.  相似文献   

15.
Butyrolactone I (BL) is a competitive inhibitor of ATP for binding and activation of cyclin-dependent kinases and is a potent inhibitor of cell cycle progression. Treatment of H460 human lung and SW480 human colon cancer cells with doses of BL that exceed the Ki for CDK inhibition but which are much lower than doses required to inhibit MAPK, PKA, PKC, or EGFR lead to a rapid significant reduction of endogenous p21 protein expression. BL-dependent inhibition of p21 expression appears to be p53-independent. BL-dependent p21 degradation was blocked by lactacystin, consistent with the hypothesis that there is accelerated p21 proteasomal degradation in the presence of BL. BL also inhibited the p53-dependent increase of p21 protein expression in cells exposed to the DNA damaging agent etoposide, and favored a greater G2/M arrest as compared to the non-BL exposed cells. BL accelerated the degradation of exogenously expressed p21 that was not observed with a C-terminal truncated form of p21. Degradation of exogenous p21 led to a shift to G2 accumulation in the cells exposed to BL. We conclude that BL has effects on the cell cycle beyond its role as a CDK inhibitor and can be used as a novel tool to study the mechanism of p21 degradation and the consequences towards p21-dependent checkpoints.

Key Words

p21, Butyrolactone, Proteasome, Cell Cycle, Checkpoint  相似文献   

16.
Positive-strand RNA viruses genome replication invariably is associated with vesicles or other rearranged cellular membranes. Brome mosaic virus (BMV) RNA replication occurs on perinuclear endoplasmic reticulum (ER) membranes in ~70 nm vesicular invaginations (spherules). BMV RNA replication vesicles show multiple parallels with membrane-enveloped, budding retrovirus virions, whose envelopment and release depend on the host ESCRT (endosomal sorting complexes required for transport) membrane-remodeling machinery. We now find that deleting components of the ESCRT pathway results in at least two distinct BMV phenotypes. One group of genes regulate RNA replication and the frequency of viral replication complex formation, but had no effect on spherule size, while a second group of genes regulate RNA replication in a way or ways independent of spherule formation. In particular, deleting SNF7 inhibits BMV RNA replication > 25-fold and abolishes detectable BMV spherule formation, even though the BMV RNA replication proteins accumulate and localize normally on perinuclear ER membranes. Moreover, BMV ESCRT recruitment and spherule assembly depend on different sets of protein-protein interactions from those used by multivesicular body vesicles, HIV-1 virion budding, or tomato bushy stunt virus (TBSV) spherule formation. These and other data demonstrate that BMV requires cellular ESCRT components for proper formation and function of its vesicular RNA replication compartments. The results highlight growing but diverse interactions of ESCRT factors with many viruses and viral processes, and potential value of the ESCRT pathway as a target for broad-spectrum antiviral resistance.  相似文献   

17.
TSG101 (tumor susceptibility gene 101) is a multi-domain protein known to act in the cell nucleus, cytoplasm, and periplasmic membrane. Remarkably, TSG101, whose location within cells varies with the stage of the cell cycle, affects biological events as diverse as cell growth and proliferation, gene expression, cytokinesis, and endosomal trafficking. The functions of TSG101 additionally are recruited for viral and microvesicle budding and for intracellular survival of invading bacteria. Here we report that the TSG101 protein also interacts with and down-regulates the promoter of the p21CIP1/WAF1tumor suppressor gene, and identify a p21 locus and TSG101 domains that mediate this interaction. TSG101 deficiency in Saos-2 human osteosarcoma cells was accompanied by an increased abundance of p21 mRNA and protein and the retardation of cell proliferation. A cis-acting element in the p21 promoter that interacts with TSG101 and is required for promoter repression was located using chromatin immunoprecipitation (ChIP) analysis and p21-driven luciferase reporter gene expression, respectively. Additional analysis of TSG101 deletion mutants lacking specific domains established the role of the central TSG101 domains in binding to the p21 promoter and demonstrated the additional essentiality of the TSG101 C-terminal steadiness box (SB) in the repression of p21 promoter activity. Neither binding of TSG101 to the p21 promoter nor repression of this promoter required the TSG101 N-terminal UEV domain, which mediates the ubiquitin-recognition functions of TSG101 and its actions as a member of ESCRT endocytic trafficking complexes, indicating that regulation of the p21 promoter by TSG101 is independent of its role in such trafficking.  相似文献   

18.
The collagen IV sulfilimine cross-link and its catalyzing enzyme, peroxidasin, represent a dyad critical for tissue development, which is conserved throughout the animal kingdom. Peroxidasin forms novel sulfilimine bonds between opposing methionine and hydroxylysine residues to structurally reinforce the collagen IV scaffold, a function critical for basement membrane and tissue integrity. However, the molecular mechanism underlying cross-link formation remains unclear. In this work, we demonstrate that the catalytic domain of peroxidasin and its immunoglobulin (Ig) domains are required for efficient sulfilimine bond formation. Thus, these molecular features underlie the evolutionarily conserved function of peroxidasin in tissue development and integrity and distinguish peroxidasin from other peroxidases, such as myeloperoxidase (MPO) and eosinophil peroxidase (EPO).  相似文献   

19.
The cyclin-dependent kinase (CDK) inhibitor p57Kip2 is a negative regulator of cell proliferation, binding to a variety of cyclin-CDK complexes and inhibiting their kinase activities. The p57Kip2 gene was recognized as a target gene for p73β, one member of the p53 family. In spite of this, the phenotypes of p73 and p57Kip2 knock out mice do not resemble each other while there is a phenotypic overlap betweeen the p57Kip2 null mice, the p63 null mice and patients affected by p63 associated syndromes, suggesting that p57Kip2 could be indeed a downstream target of p63. By ChIP we determined that in the HaCaT cell line the δNp63α protein is associated to three different regions of the p57Kip2 gene. δNp63 can activate both the endogenous p57Kip2 gene and a reporter vector containing a -2191 promoter fragment of the p57Kip2 gene. Natural p63 mutants, associated to the AEC syndrome, show a partial or complete lack of transactivation potential of the p57Kip2 promoter, while three other natural p63 mutants, associated to the EEC, LMS and SHFM-4 syndromes, were less affected. These data suggests that p63 play an important role in the regulation of p57Kip2 expression and that this regulation is subverted in AEC p63 mutants.  相似文献   

20.
p27 is a key regulator of cell proliferation through inhibition of G(1) cyclin-dependent kinase (CDK) activity. Translation of the p27 mRNA is an important control mechanism for determining cellular levels of the inhibitor. Nearly all eukaryotic mRNAs are translated through a mechanism involving recognition of the 5' cap by eukaryotic initiation factor 4E (eIF4E). In quiescent cells eIF4E activity is repressed, leading to a global decline in translation rates. In contrast, p27 translation is highest during quiescence, suggesting that it escapes the general repression of translational initiation. We show that the 5' untranslated region (5'-UTR) of the p27 mRNA mediates cap-independent translation. This activity is unaffected by conditions in which eIF4E is inhibited. In D6P2T cells, elevated cyclic AMP levels cause a rapid withdrawal from the cell cycle that is correlated with a striking increase in p27. Under these same conditions, cap-independent translation from the p27 5'-UTR is enhanced. These results indicate that regulation of internal initiation of translation is an important determinant of p27 protein levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号