首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using game theory, we developed a kin-selection model to investigate the consequences of local competition and inbreeding depression on the evolution of natal dispersal. Mating systems have the potential to favor strong sex biases in dispersal because sex differences in potential reproductive success affect the balance between local resource competition and local mate competition. No bias is expected when local competition equally affects males and females, as happens in monogamous systems and also in polygynous or promiscuous ones as long as female fitness is limited by extrinsic factors (breeding resources). In contrast, a male-biased dispersal is predicted when local mate competition exceeds local resource competition, as happens under polygyny/promiscuity when female fitness is limited by intrinsic factors (maximal rate of processing resources rather than resources themselves). This bias is reinforced by among-sex interactions: female philopatry enhances breeding opportunities for related males, while male dispersal decreases the chances that related females will inbreed. These results meet empirical patterns in mammals: polygynous/promiscuous species usually display a male-biased dispersal, while both sexes disperse in monogamous species. A parallel is drawn with sex-ratio theory, which also predicts biases toward the sex that suffers less from local competition. Optimal sex ratios and optimal sex-specific dispersal show mutual dependence, which argues for the development of coevolution models.  相似文献   

2.
Sex-biased dispersal is a common phenomenon in birds and mammals. Competition for mates has been argued to be an important selective pressure favouring dispersal. Sexual differences in the level of intrasexual competition may produce asymmetries in the costs-benefits balance of dispersal and philopatry for males and females, which may favour male-biased dispersal in polygynous species such as most mammals. This being the case, condition-dependent dispersal predicts that male-bias should decrease if mating competition relaxes. We test this expectation for red deer, where male-biased dispersal is the norm. In southwestern Spain, red deer populations located in nonfenced hunting estates presented altered structures with sex ratio strongly biased to females and high proportion of young males. As a consequence, mate competition in these populations was lower than in other, most typical red deer populations. We found that, under such conditions of altered population structure, dispersal was female-biased rather than male-biased. Additionally, mate competition positively related to male dispersal but negatively to female dispersal. Other factors such as resource competition, age of individuals and sex ratio were not related to male or female dispersal. Males may not disperse if intrasexual competition is low and then females may disperse as a response to male philopatry. We propose hypotheses related to female mate choice to explain female dispersal under male philopatry. The shift of the sex-biased dispersal pattern along the gradient of mate competition highlights its condition-dependence as well as the interaction between male and female dispersal in the evolution of sex-biased dispersal.  相似文献   

3.
Two principles are important for the optimal sex ratio strategy of plants. (1) Sib mating. Because seed dispersal is restricted, sib mating may occur which selects for a female bias in the seed sex ratio. (2) Local resource competition (LRC). If a plant produces pollen its nuclear genes are dispersed in two steps: first through the pollen and then, if the pollen is successful in fertilizing an ovule on another plant, through the seed. If the plant produces an ovule, its genes are dispersed only through the seed. By making pollen instead of ovules the offspring of a single plant is then spread out over a wider area. This reduces the chance that genetically related individuals are close together and need to compete for the same resource. The effect is the strongest if pollen is dispersed over a much wider area than seeds. Less LRC for paternally vs. maternally derived offspring selects for a male bias in sex allocation. We study the above‐mentioned opposite effects in dioecious plants (with separate male and female individuals), with maternal control over the sex ratio (fraction males) in the seeds. In a two‐dimensional spatial model female‐biased sex ratios are found when both pollen and seed dispersal are severely restricted. If pollen disperses over a wider area than seeds, which is probably the common situation in plants, the seed sex ratio becomes male‐biased. If pollen and seeds are both dispersed over a wide area, the sex ratio approaches 0.5. Our results do not change if the offspring of brother–sister matings are less fit because of inbreeding depression.  相似文献   

4.
Sex ratio theory provides a powerful source of testable predictions about sex allocation strategies. Although studies of invertebrates generally support predictions derived from the sex ratio theory, evidence for adaptive sex ratio biasing in vertebrates remains contentious. This may be due to the fact that most studies of vertebrates have focused on facultative adjustment in relation to maternal condition, rather than processes that might produce uniform sex biases across individuals. Here, we examine the effects of local resource enhancement (LRE) and local resource competition (LRC) on birth sex ratios (BSRs). We also examine the effects of sex differences in the costs of rearing male and female offspring on BSRs. We present data from 102 primate species and show that BSRs are skewed in favour of the dispersing sex in species that do not breed cooperatively, as predicted by the LRC model. In accordance with the LRE model, BSRs are generally skewed in favour of the more beneficial sex in cooperatively breeding primate species. There is no evidence that BSRs reflect the extent of sexual size dimorphism, an indirect measure of the costs of rearing male and female offspring. These analyses suggest that adaptive processes may play an important role in the evolution of BSRs in vertebrates.  相似文献   

5.
Sex investment ratios in populations of bumblebees are male biased, which contradicts theoretical predictions. Male-biased investment ratios in eusocial Hymenoptera are assumed to be non-stable for both the queen and her workers. In this paper, we show that male-biased sex allocation does not necessarily decrease fitness in the bumblebee Bombus terrestris. A male-biased investment ratio can be the result of an optimal allocation of resources when resources are scarce if (i) there is a large cost difference between male and female production, (ii) there is uncertainty about the amount of resources a colony can invest, and (iii) only a proportion of the investment made in an individual can be reused. This resource allocation then leads to split sex ratios depending on the amount of resources available to a bumblebee colony: colonies under low resource conditions will show a male-biased investment ratio, whereas colonies under high resource conditions allocate more resources towards females. However, the extent to which bumblebee populations show a male-biased sex allocation cannot be explained by cost differences between male and female production alone. In a recent paper, A. F. G. Bourke argued that male-biased investment ratios in bumblebee populations are a by-product of the occurrence of protandry (males emerge before females). Here we will extend Bourke''s argument and show that within a protandrous population, both protandrous and protogynous (females emerge before males) colonies exist. The existence of protandrous and protogynous colonies results in split sex ratios in time, because protogynous colonies rely on males produced by protandrous colonies (partial protandry).  相似文献   

6.
Local mate competition (LMC) occurs when male relatives compete for mating opportunities, and this may favour the evolution of female-biased sex allocation. LMC theory is among the most well developed and empirically supported topics in behavioural ecology, clarifies links between kin selection, group selection and game theory, and provides among the best quantitative evidence for Darwinian adaptation in the natural world. Two striking invariants arise from this body of work: the number of sons produced by each female is independent of both female fecundity and also the rate of female dispersal. Both of these invariants have stimulated a great deal of theoretical and empirical research. Here, we show that both of these invariants break down when variation in female fecundity and limited female dispersal are considered in conjunction. Specifically, limited dispersal of females following mating leads to local resource competition (LRC) between female relatives for breeding opportunities, and the daughters of high-fecundity mothers experience such LRC more strongly than do those of low-fecundity mothers. Accordingly, high-fecundity mothers are favoured to invest relatively more in sons, while low-fecundity mothers are favoured to invest relatively more in daughters, and the overall sex ratio of the population sex ratio becomes more female biased as a result.  相似文献   

7.
Numerous hypotheses have been developed to explain sex allocation. In male-dispersing, female cooperatively breeding species, the local resource competition model predicts male-biased birth sex ratio, the local resource enhancement model predicts female-biased birth sex ratio, and the population adjustment model predicts that biased birth sex ratio should not be favored if the two sexes are equally costly to rear. The male quality model predicts that, in polygynous species, females in better physical condition will either produce more sons than daughters or invest more heavily in sons than in daughters. White-headed langurs are a female philopatry and female cooperatively breeding species. During a 11-yr study, a total of 133 births were recorded, among which birth sex ratio (M:F = 73:49) was significantly male-biased. This is consistent with the prediction of the local resource competition model. On the other hand, if mothers balanced their investment between the two sexes, according to Fisher's population adjustment model, males should be the less-costly-to-rear sex. However, we found no sex difference for infant mortality (12.3% in males and 12.2% in females), and sons induced slightly longer interbirth interval (son: 26.4 ± 1.1 mo, daughter: 24.1 ± 0.6 mo) and lactational period (son: 20.9 ± 1.0 mo, daughters: 19.6 ± 0.5 mo) for their mothers. Thus, the population adjustment model was not supported by this study. The local resource enhancement model was not supported because birth sex ratio did not bias to females who provided more reproductive assistance. On the individual level, probit regression showed no relation between birth sex ratio and group size. Because the group size was considered to be negatively related to female physical condition, our study did not support the male-quality model. We suggested several possibilities to explain these results.  相似文献   

8.
Evolutionary theory predicts that levels of dispersal vary in response to the extent of local competition for resources and the relatedness between potential competitors. Here, we test these predictions by making use of a female dispersal dimorphism in the parasitoid wasp Melittobia australica. We show that there are two distinct female morphs, which differ in morphology, pattern of egg production, and dispersal behaviour. As predicted by theory, we found that greater competition for resources resulted in increased production of dispersing females. In contrast, we did not find support for the prediction that high relatedness between competitors increases the production of dispersing females in Melittobia. Finally, we exploit the close links between the evolutionary processes leading to selection for dispersal and for biased sex ratios to examine whether the pattern of dispersal can help distinguish between competing hypotheses for the lack of sex ratio adjustment in Melittobia.  相似文献   

9.
The sex ratio of the local population influences mating-related behaviours in many species. Recent experiments show that male-biased sex ratios increase the amount of financial resources men will invest in potential mates, suggesting that sex ratios influence allocation of mating effort in humans. To investigate this issue further, we tested for effects of cues to the sex ratio of the local population on the motivational salience of attractiveness in own-sex and opposite-sex faces. We did this using an effort-based key-press task, in which the motivational salience of facial attractiveness was assessed in samples of faces in which the ratio of male to female images was manipulated. The motivational salience of attractive opposite-sex, but not own-sex, faces was greater in the own-sex-biased (high competition for mates) than in the opposite-sex-biased (low competition for mates) condition. Moreover, this effect was not modulated by participant sex. These results present new evidence that sex ratio influences human mating-related behaviours. They also present the first evidence that the perceived sex ratio of the local population may modulate allocation of mating effort in women, as well as men.  相似文献   

10.
Summary Sex ratios of a population and of litters were sampled in muskrats in Ontario, Canada. Sex ratios of litters sampled from nests were male biased (54% male). Until weaning, no differential costs of producing and rearing male and female young were identified that could account for this greater production of males. Following weaning, however, male-biased dispersal of juveniles from their natal site and more frequent acquisition by females of these sites as breeding sites the following year suggested a greater investment by adult females in female young. Therefore, competition between female siblings for the acquisition of their natal site may be sufficient to result in the greater production of males. In addition, the simultaneous occupation of, and competition between, siblings and parents for the resources of the natal home range may not be necessary for local resource competition to result in a greater production of the dispersing sex. Greater-than-expected binomial variance in sex ratios of litters suggested that adjustment of sex-ratios occurred. However, we were unable to associate the adjustment of litter sex ratios with changes in maternal condition. The greater production of males and the predominance of monogamous associations between adults in this population may have lead to slightly greater variation in male fitness than female fitness. Therefore, a female in better-than-average condition may have benefited by producing more males. Similarly, a lower cost of producing dispersing males may allow nutritionally-stressed females to reduce their total expenditure on offspring by producing more males. Because these experiments were non-manipulative, maternal condition may not have varied sufficiently during this study to detect adjustments of litter sex ratios resulting from either of the above mechanisms acting separately, but the combined effects of small differences in matermal condition and selective pressures operating in the same direction may have resulted in the observed deviation from the binomial.  相似文献   

11.
Variation in birth sex ratios in primates can be accounted for by two hypotheses: the local resource competition hypothesis [Silk: American Naturalist 121:56–66, 1983] and the hypothesis of Trivers & Willard [Science 179:90–92, 1973] concerning the maternal effect on the quality of a male. We examined the effects of female dominance rank on aspects of reproduction in three well-established captive groups of long-tailed macaques (Macaca fascicularis). High-ranking females produced a higher proportion of sons than low-ranking females, and factors other than rank did not have significant effects on birth sex ratios. Interbirth intervals following daughters were longer than those following sons, but they were independent of the mother's rank. The sons of high-ranking mothers had better survival prospects than sons of low-ranking mothers in some of the groups; no such difference was found for daughters. Overall, there was no sex difference in survival up to 5 years of age. These results support the Trivers-Willard hypothesis rather than the local resource competition hypothesis. An analysis of interbirth intervals suggested that the deviation in birth sex ratio is already established at conception.  相似文献   

12.
Sex allocation theory predicts that a female should produce the offspring of the sex that most increases her own fitness. For polygynous species, this means that females in superior condition should bias offspring production toward the sex with greater variation in lifetime reproductive success, which is typically males. Captive mammal populations are generally kept in good nutritional condition with low levels of stress, and thus populations of polygynous species might be expected to have birth sex ratios biased toward males. Sex allocation theory also predicts that when competition reduces reproductive success of the mother, she should bias offspring toward whichever sex disperses. These predicted biases would have a large impact on captive breeding programs because unbalanced sex ratios may compromise use of limited space in zoos. We examined 66 species of mammals from three taxonomic orders (primates, ungulates, and carnivores) maintained in North American zoos for evidence of birth sex ratio bias. Contrary to our expectations, we found no evidence of bias toward male births in polygynous populations. We did find evidence that birth sex ratios of primates are male biased and that, within primates, offspring sex was biased toward the naturally dispersing sex. We also found that most species experienced long contiguous periods of at least 7 years with either male‐ or female‐biased sex ratios, owing in part to patterns of dispersal (for primates) and/or to stochastic causes. Population managers must be ready to compensate for significant biases in birth sex ratio based on dispersal and stochasticity. Zoo Biol 19:11–25, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

13.
We investigated sex allocation in the Neotropical ant Allomerus octoarticulatus var. demerarae . Because Allomerus is a plant symbiont, we could make geographically extensive collections of complete colonies and of foundresses in saplings, allowing us to estimate not only population- and colony-level sex allocation but also colony resource levels and the relatednesses of competing ant foundresses. This species exhibits a strongly split sex ratio, with 80% of mature colonies producing ≥90% of one sex or the other. Our genetic analyses (DNA microsatellites) reveal that Allomerus has a breeding system characterized by almost complete monogyny and a low frequency of polyandry. Contrary to theoretical explanations, we find no difference in worker relatedness asymmetries between female- and male-specialist colonies. Furthermore, no clear link was found between colony sex allocation and life history traits such as the number of mates per queen, or colony size, resource level, or fecundity. We also failed to find significant support for male production by workers, infection by Wolbachia , local resource competition, or local mate competition. We are left with the possibility that Allomerus exhibits split sex ratios because of the evolution of alternative biasing strategies in queens or workers, as recently proposed in the literature.  相似文献   

14.
We investigated variation in the primary sex ratio within andbetween 14 populations of roe deer (Capreolus capreolus) inrelation to maternal body condition. The sex ratio was increasinglymale biased as average maternal body weight decreased. Thisrelationship did not vary according to the population consideredand was not affected by the litter size produced. This relationshipwas also apparent within populations. These results indicatethat, where environmental conditions are limiting, roe doestend to produce male-biased litters. Dispersal is more commonand occurs at an earlier age among male juveniles in this species,particularly as density increases and resources become increasinglyscarce. Thus, we suggest that where females experience environmentalstress, they tend to produce male kids to avoid potential futurelocal resource competition posed by female offspring. [BehavEcol 7: 461–464 (1996)]  相似文献   

15.
Dispersal is ubiquitous throughout the tree of life: factors selecting for dispersal include kin competition, inbreeding avoidance and spatiotemporal variation in resources or habitat suitability. These factors differ in whether they promote male and female dispersal equally strongly, and often selection on dispersal of one sex depends on how much the other disperses. For example, for inbreeding avoidance it can be sufficient that one sex disperses away from the natal site. Attempts to understand sex‐specific dispersal evolution have created a rich body of theoretical literature, which we review here. We highlight an interesting gap between empirical and theoretical literature. The former associates different patterns of sex‐biased dispersal with mating systems, such as female‐biased dispersal in monogamous birds and male‐biased dispersal in polygynous mammals. The predominant explanation is traceable back to Greenwood's ( 1980 ) ideas of how successful philopatric or dispersing individuals are at gaining mates or the resources required to attract them. Theory, however, has developed surprisingly independently of these ideas: models typically track how immigration and emigration change relatedness patterns and alter competition for limiting resources. The limiting resources are often considered sexually distinct, with breeding sites and fertilizable females limiting reproductive success for females and males, respectively. We show that the link between mating system and sex‐biased dispersal is far from resolved: there are studies showing that mating systems matter, but the oft‐stated association between polygyny and male‐biased dispersal is not a straightforward theoretical expectation. Here, an important understudied factor is the extent to which movement is interpretable as an extension of mate‐searching (e.g. are matings possible en route or do they only happen after settling in new habitat – or can females perhaps move with stored sperm). We also point out other new directions for bridging the gap between empirical and theoretical studies: there is a need to build Greenwood's influential yet verbal explanation into formal models, which also includes the possibility that an individual benefits from mobility as it leads to fitness gains in more than one final breeding location (a possibility not present in models with a very rigid deme structure). The order of life‐cycle events is likewise important, as this impacts whether a departing individual leaves behind important resources for its female or male kin, or perhaps both, in the case of partially overlapping resource use.  相似文献   

16.
Sex ratio and intrasexual kin competition in mammals   总被引:1,自引:0,他引:1  
Summary Asymmetries in both intrasexual competition and generation overlap occur in Antechinus (Dasyuridae; Marsupialia). We show that the range of interpopulation variation in the sex ratio of pouch young spans and exceeds the range of sex ratios at birth hitherto recorded from eutherians (Clutton-Brock and Albon 1983). Although postweaning dispersal and male mortality are similar among all Antechinus populations, interpopulation variance in female longevity leads to variable duration of mother/daughter interaction. As this duration increases, parental investment is increasingly biased toward males, supporting the view that local competition among female kin for resources may influence mammalian sex ratios.  相似文献   

17.
Dispersal in birds and mammals tends to be female-biased in monogamous species and male-biased in polygamous species. However results for other taxa, most notably fish, are equivocal. We employed molecular markers and physical tags to test the hypothesis that Atlantic salmon, a promiscuous species with intense male-male competition for access to females, displays male-biased dispersal. We found significant variation in sex ratios and in asymmetric gene flow between neighbouring salmon populations, but little or no evidence for sex-biased dispersal. We show that conditions favouring male dispersal will often be offset by those favouring female dispersal, and that spatial and temporal variation in sex ratios within a metapopulation may favour the dispersal of different sexes in source and sink habitats. Thus, our results reconcile previous discrepancies on salmonid dispersal and highlight the need to consider metapopulation dynamics and sex ratios in the study of natal dispersal of highly fecund species.  相似文献   

18.
ABSTRACT

While equal ratios of males and females are normal, crustacean sex ratios are frequently biased. Here I review potential reasons for sex ratio biases in animals, and evaluate how likely they apply to crustaceans. I introduce crustacean examples and highlight promising crustacean taxa for future studies where examples are lacking. I conclude that ecological differences between the sexes appear to be the dominant reason for sex ratio bias in crustaceans. Major life history patterns limit the importance of evolutionary drivers to sedentary taxa with limited dispersal. Still largely unresolved is the question whether females can bias their offspring sex ratio, and given the diversity of sex determining systems, answers will vary from case to case.

Abbreviations: LMC: local mate competition; LSC: local sperm competition.  相似文献   

19.
Summary An evolutionarily stable strategy (ESS) on pre-copulatory mate-guarding duration is separately obtained for males and females, by assuming that either the male or female can control perfectly the timing of guarding. A difference between sexes in an ESS brings on an intersexual conflict, in particular when the ESS of the actively searching sex (usually male) is longer than that of the other. We analyse two extreme situations, in which the female mating stages are either perfectly synchronized or uniformly distributed. The analysis reveals that (1) the male ESS for guarding duration is longer than the female ESS in the synchronized case if the sex ratio is male-biased, (2) the difference in ESSs is higher for a more male-biased sex ratio, less guarding costs or a higher encounter rate, and (3) an asynchronous female mating cycle extends the conflict region towards female-biased sex ratios. We show by including conflict costs in fitnesses of both sexes that intersexual conflict may be resolved by a compromised solution, where the starting time of mate guarding is an intermediate value between the ESSs of the two sexes. This compromised strategy depends on both fitness increments of winning the conflict and physical power in controlling the opponent and tends to approach the ESS of the commoner sex in highly biased sex ratios. If both actors engaged in a conflict have enough information on each other, a compromise without an overt struggle may be reached.  相似文献   

20.
The local resource competition (LRC) hypothesis predicts thatwherever philopatric offspring compete for resources with theirmothers, offspring sex ratios should be biased in favor of thedispersing sex. In ants, LRC is typically found in polygynous(multiple queen) species where foundation of new nests occursby budding, which results in a strong population structure anda male-biased population-wide sex ratio. However, under polygyny,the effect of LRC on sex allocation is often blurred by theeffect of lowered relatedness asymmetries among colony members.Moreover, environmental factors, such as the availability ofresources, have also been shown to deeply influence sex ratioin ants. We investigated sex allocation in the monogynous (singlequeen) ant Cataglyphis cursor, a species where colonies reproduceby budding and both male and female sexuals are produced throughparthenogenesis, so that between-colony variations in relatednessasymmetries should be reduced. Our results show that sex allocationin C. cursor is highly male biased both at the colony and populationlevels. Genetic analyses indicate a significant isolation-by-distancein the study population, consistent with limited dispersal offemales. As expected from asexual reproduction, only weak variationsin relatedness asymmetry of workers toward sexual offspringoccur across colonies, and they are not associated with colonysex ratio. Inconsistent with the predictions of the resourceavailability hypothesis, the male bias significantly increaseswith colony size, and investment in males, but not in females,is positively correlated with total investment in sexuals. Overall,our results are consistent with the predictions of the LRC hypothesisto account for sex ratio variation in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号