首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ferguson (1989) has recently argued that the variability seen in the fossils assigned toA. afarensis is far more than expected for a single hominid species, and therefore proposes they represent multiple taxa. In particular, he utilizes data on variation in dental metrics and in premolar morphology in support of this hypothesis. A re-evaluation of these data finds the above conclusion to be unwarranted. Variation in dental metrics providesno basis for separating this sample into multiple taxa, regardless of the analog that is used (i.e. modern primate species or fossil hominid species). Additionally, data on P3 morphology indicate that thepattern of variation seen in the Laetoli/Hadar sample is comparable to the sexual variation seenwithin a single hominoid species. Overall, the balance of the evidence at present indicates that the fossils from Laetoli and Hadar represent a single hominid species,A. afarensis.  相似文献   

3.
Seventy six metrical traits measured on the femur and tibia of three higher primate groups —Ceboidea, Cercopithecoidea, Hominoidea have been processed by various univariate and multivariate statistical methods to survey the process of evolution of the morphology of the femur and tibia in higher primates. Intragroup and intergroup variability, similarity and differences as well as various aspects of scaling and sexual dimorphism have been analyzed to study adaptive trends and phylogenetic diversity in higher primates, in individual superfamilies and to explore the adaptive morphological pattern of early hominids and basic differences between hominids and pongids. Two basic morphotypes of the femur and tibia in higher primates have been determined. They are (1) advanced hominoid morphotype (hominids and pongids) and (2) ancestral higher primate morphotype (platyrrhine and cattarrhine monkeys, early hominoids, and hylobatids). Cebid lower limb bones are adapted to arboreal quadrupedalism with antipronograde features while femur and tibia of cercopithecid monkeys are basically adapted to the semi-arboreal locomotion. Early hominoids (Proconsul) and hylobatids are morphologically different from pongids; some features are close toAteles or other monkey species. Pongids and hominids are taken as one major morphological group with different scaling and some functional and morphological similarities. Numerous analogous features were described on the lower limb skeleton ofPan andPongo showing analogous ecological parameters in their evolution. Major morphological and biomechanical trends are analyzed. It is argued that early advanced hominoid morphology is ancestral both to the pongids and to early hominids. The progressive morphological trend in early hominids has been found fromA. afarensis with ancestral hominid morphology, toH. habilis with an elongated femur and structural features similar to advanced hominids. A detailed phylogenetic analysis of higher primate femur and tibia is also presented.  相似文献   

4.
The phylogenetic relationship between Australopithecus anamensis and Australopithecus afarensis has been hypothesized as ancestor‐descendant. However, the weakest part of this hypothesis has been the absence of fossil samples between 3.6 and 3.9 million years ago. Here we describe new fossil specimens from the Woranso‐Mille site in Ethiopia that are directly relevant to this issue. They derive from sediments chronometrically dated to 3.57–3.8 million years ago. The new fossil specimens are largely isolated teeth, partial mandibles, and maxillae, and some postcranial fragments. However, they shed some light on the relationships between Au. anamensis and Au. afarensis. The dental morphology shows closer affinity with Au. anamensis from Allia Bay/Kanapoi (Kenya) and Asa Issie (Ethiopia) than with Au. afarensis from Hadar (Ethiopia). However, they are intermediate in dental and mandibular morphology between Au. anamensis and the older Au. afarensis material from Laetoli. The new fossils lend strong support to the hypothesized ancestor‐descendant relationship between these two early Australopithecus species. The Woranso‐Mille hominids cannot be unequivocally assigned to either taxon due to their dental morphological intermediacy. This could be an indication that the Kanapoi, Allia Bay, and Asa Issie Au. anamensis is the primitive form of Au. afarensis at Hadar with the Laetoli and Woranso‐Mille populations sampling a mosaic of morphological features from both ends. It is particularly difficult to draw a line between Au. anamensis and Au. afarensis in light of the new discoveries from Woranso‐Mille. The morphology provides no evidence that Au. afarensis and Au. anamensis represent distinct taxa. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Despite the fact that the shoulder is one of the most extensively studied regions in comparative primate and human anatomy, two recent fossil hominin discoveries have revealed quite unexpected morphology. The first is a humerus of the diminutive fossil hominin from the island of Flores, Homo floresiensis (LB1/50), which displays a very low degree of humeral torsion 1 , 2 (Fig. 1; see Box 1). Modern humans have a high degree of torsion and, since this is commonly viewed as a derived feature shared with hominoids, 3 - 6 one would expect all fossil hominins to display high humeral torsion. The second is the recently discovered Australopithecus afarensis juvenile scapula DIK‐1‐1 from Dikika, Ethiopia, which seems to most closely resemble those of gorillas. 7 This specimen is the first nearly complete scapula known for an early hominin and, given the close phylogenetic relationship between humans and chimpanzees suggested by molecular studies, 8 - 13 one would have expected more similarity to chimpanzees among extant hominoids.  相似文献   

6.
Many researchers have suggested that Australopithecus anamensis and Australopithecus afarensis were among the earliest hominins to have diets that included hard, brittle items. Here we examine dental microwear textures of these hominins for evidence of this. The molars of three Au. anamensis and 19 Au. afarensis specimens examined preserve unobscured antemortem microwear. Microwear textures of these individuals closely resemble those of Paranthropus boisei, having lower complexity values than Australopithecus africanus and especially Paranthropus robustus. The microwear texture complexity values for Au. anamensis and Au. afarensis are similar to those of the grass-eating Theropithecus gelada and folivorous Alouatta palliata and Trachypithecus cristatus. This implies that these Au. anamensis and Au. afarensis individuals did not have diets dominated by hard, brittle foods shortly before their deaths. On the other hand, microwear texture anisotropy values for these taxa are lower on average than those of Theropithecus, Alouatta or Trachypithecus. This suggests that the fossil taxa did not have diets dominated by tough foods either, or if they did that directions of tooth–tooth movement were less constrained than in higher cusped and sharper crested extant primate grass eaters and folivores.  相似文献   

7.

Background

In the Plio-Pleistocene, the hominin foot evolved from a grasping appendage to a stiff, propulsive lever. Central to this transition was the development of the longitudinal arch, a structure that helps store elastic energy and stiffen the foot during bipedal locomotion. Direct evidence for arch evolution, however, has been somewhat elusive given the failure of soft-tissue to fossilize. Paleoanthropologists have relied on footprints and bony correlates of arch development, though little consensus has emerged as to when the arch evolved.

Methodology/Principal Findings

Here, we present evidence from radiographs of modern humans (n = 261) that the set of the distal tibia in the sagittal plane, henceforth referred to as the tibial arch angle, is related to rearfoot arching. Non-human primates have a posteriorly directed tibial arch angle, while most humans have an anteriorly directed tibial arch angle. Those humans with a posteriorly directed tibial arch angle (8%) have significantly lower talocalcaneal and talar declination angles, both measures of an asymptomatic flatfoot. Application of these results to the hominin fossil record reveals that a well developed rearfoot arch had evolved in Australopithecus afarensis. However, as in humans today, Australopithecus populations exhibited individual variation in foot morphology and arch development, and “Lucy” (A.L. 288-1), a 3.18 Myr-old female Australopithecus, likely possessed asymptomatic flat feet. Additional distal tibiae from the Plio-Pleistocene show variation in tibial arch angles, including two early Homo tibiae that also have slightly posteriorly directed tibial arch angles.

Conclusions/Significance

This study finds that the rearfoot arch was present in the genus Australopithecus. However, the female Australopithecus afarensis “Lucy” has an ankle morphology consistent with non-pathological flat-footedness. This study suggests that, as in humans today, there was variation in arch development in Plio-Pleistocene hominins.  相似文献   

8.
Recent discussions of the pedal morphology of Australopithecus afarensis have led to conflicting interpretations of australopithecine locomotor behavior. We report the results of a study using computer aided design (CAD) software that provides a quantitative assessment of the functional morphology of australopithecine metatarsophalangeal joints. The sample includes A. afarensis, Homo sapiens, Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus. Angular measurements of the articular surfaces relative to the long axes of the metatarsals and phalanges were taken to determine whether the articular surfaces are plantarly or dorsally oriented. Humans have the most dorsally oriented articular surfaces of the proximal pedal phalanges. This trait appears to be functionally associated with dorsiflexion during bipedal stride. Pongo has the most plantarly oriented articular surfaces of the proximal pedal phalanges, probably reflecting an emphasis on plantarflexion in arboreal positional behaviors, while the African hominoids are intermediate between Pongo and Homo for this characteristic. A. afarensis falls midway between the African apes and humans. Results from an analysis of metatarsal heads are inconclusive with regard to the functional morphology of A. afarensis. Overall, the results are consistent with other evidence indicating that A. afarensis was a capable climber. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The Pliocene hominins Australopithecus anamensis and Australopithecus afarensis likely represent ancestor-descendent taxa—possibly an anagenetic lineage—and capture significant change in the morphology of the canine and mandibular third premolar (P3) crowns, dental elements that form the canine honing complex in nonhuman catarrhines. This study focuses on the P3 crown, highlighting plesiomorphic features in A. anamensis. The A. afarensis P3 crown, in contrast, is variable in its expression of apomorphic features that are characteristic of geologically younger hominins. Temporal variation characterizes each taxon as well. The A. anamensis P3 from Allia Bay, Kenya expresses apomorphic character states, shared with A. afarensis, which are not seen in the older sample of A. anamensis P3s from Kanapoi, Kenya, while spatiotemporal differences in shape exist within the A. afarensis hypodigm. The accumulation of derived features in A. afarensis results in an increased level of P3 molarisation. P3 molarisation did not evolve concurrent with postcanine megadontia and neither did the appearance of derived aspects of P3 occlusal form coincide with the loss of canine honing in hominins, which is apparent prior to the origin of the genus Australopithecus. A. afarensis P3 variation reveals the independence of shape, size, and occlusal form. The evolution of the P3 crown in early Australopithecus bridges the wide morphological gap that exists between geologically younger hominins on the one hand and extant apes and Ardipithecus on the other.  相似文献   

10.
A recent study of occlusal microwear in Australopithecus afarensis described this species as an opportunistic dweller, living in both forested and open environments and greatly relying on fallback resources and using fewer food-processing activities than previously suggested. In the present study, analysis of buccal microwear variability in a sample of A. afarensis specimens (n = 75 teeth) showed no significant correlations with the ecological shift that took place around 3.5 Ma in Africa. These results are consistent with the occlusal microwear data available. In fact, significant correlations between buccal and occlusal microwear variables were found. However, comparison of the buccal microwear patterns showed clear similarities between A. afarensis and those hominoid species living in somewhat open environments, especially the Cameroon gorillas. A diet based mainly on succulent fruits and seasonal fallback resources would be consistent with the buccal microwear patterns observed.  相似文献   

11.
A partial mandible with two molars intact was recovered between 1981 and 1984 from deposits of the Middle Pliocene at Tabarin, in Kenya. It has been described and assigned toAustralopithecus cf.afarensis Johanson, White, andCoppens, 1978, with the condition that if ‘A. afarensis’ is revised, then the attribution may change. The taxon ‘A. afarensis’ was found to be invalid and was revised. The smaller specimens of ‘A. afarensis,’ to which the Tabarin mandible was said to be similar, were redescribed asHomo antiquus Ferguson, 1984. Since the Tabarin mandible andH. antiquus are successive transients of the same gens and are allopatric, the Tabarin hominid population is described as an earlier chronosubspecies,Homo antiquus praegens ssp. n.  相似文献   

12.
Leonard andHegmon (1987) compare a series of dental metrics of ‘Australopithecus afarensis Johanson, White, andCoppens, 1978’ with criteria for modern apes, to test the hypothesis that ‘A. afarensis’ represents a single species. They also compare the morphology of the lower third premolar. The dental breadth of ‘A. afarensis’ shows a wide range of variation, particularly in the lower third premolar morphology which displays greater variation than in modern apes—yet the study concludes that the single species hypothesis cannot be rejected. The study is flawed by applying criteria for pongids inappropriate for a hominid. When ‘A. afarensis’ is compared with criteria for hominids, the range of variation in dental size, breadth, and third premolar morphology is greater than that in any hominid species. The single species hypothesis is, therefore, once again rejected. Moreover, the name ‘A. afarensis’ is preoccupied byPraeanthropus africanus (Weinert) and must be dropped.  相似文献   

13.
Previous analyses of hand morphology in Australopithecus afarensis have concluded that this taxon had modern human‐like manual proportions, with relatively long thumbs and short fingers. These conclusions are based on the A.L.333 composite fossil assemblage from Hadar, Ethiopia, and are premised on the ability to assign phalanges to a single individual, and to the correct side and digit. Neither assignment is secure, however, given the taphonomy and sample composition at A.L.333. We use a resampling approach that includes the entire assemblage of complete hand elements at Hadar, and takes into account uncertainties in identifying phalanges by individual, side and digit number. This approach provides the most conservative estimates of manual proportions in Au. afarensis. We resampled hand long bone lengths in Au. afarensis and extant hominoids, and obtained confidence limits for distributions of manual proportions in the latter. Results confirm that intrinsic manual proportions in Au. afarensis are dissimilar to Pan and Pongo. However, manual proportions in Au. afarensis often fall at the upper end of the distribution in Gorilla, and very lower end in Homo, corresponding to disproportionately short thumbs and long medial digits in Homo. This suggests that manual proportions in Au. afarensis, particularly metacarpal proportions, were not as derived towards Homo as previously described, but rather are intermediate between gorillas and humans. Functionally, these results suggest Au. afarensis could not produce precision grips with the same efficiency as modern humans, which may in part account for the absence of lithic technology in this fossil taxon. Am J Phys Anthropol 152:393–406, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
We compared the thumb morphology ofCebus apella to that of several other primate species in order to determine whether robust thumbs are associated with tool-use. We found that thumb robusticity was greater forCebus apella than for all other represented nonhuman species exceptGorilla gorilla. Further, thumb robusticity inCebus apella was similar to that ofAustralopithecus afarensis but lesser than that of other represented hominids, including modern humans. We propose that precision gripping similar to that which occurs in tool-using context amongCebus probably occurred among Australopithecines prior to the emergence of sophisticated tool behavior amongHomo andParanthropus.  相似文献   

15.
Fully adult partial skeletons attributed to Australopithecus afarensis (AL 288-1, “Lucy”) and to Homo habilis (OH 62, “Lucy's child”), respectively, both include remains from upper and lower limbs. Relationships between various limb bone dimensions of these skeletons are compared to those of modern African apes and humans. Surprisingly, it emerges that OH 62 displays closer similarities to African apes than does AL 288-1. Yet A. afarensis, whose skeleton is dated more than 1 million years earlier, is commonly supposed to be the ancestor of Homo habilis. If OH 62, classified as Homo habilis by its discoverers, does indeed represent a stage intermediate between A. afarensis and later Homo, a revised interpretation of the course of human evolution would be necessary.  相似文献   

16.
Young primates have relatively large hands and feet for their body size, perhaps enhancing grasping ability. We test the hypothesis that selection for improved grasping ability is responsible for these scaling trends by examining the ontogeny of intrinsic hand and foot proportions in capuchin monkeys (Cebus albifrons and Sapajus apella). If selection for improved grasping ability is responsible for the observed patterns of hand and foot growth in primates, we predicted that fingers and toes would be longer early in life and proportionally decline with age. We measured the lengths of manual and pedal metapodials and phalanges in a mixed‐longitudinal radiographic sample. Bone lengths were (a) converted into phalangeal indices (summed non‐distal phalangeal length/metapodial length) to test for age‐related changes in intrinsic proportions and (b) fit to Gompertz models of growth to test for differences in the dynamics of phalangeal versus metapodial growth. Manual and pedal phalangeal indices nearly universally decreased with age in capuchin monkeys. Growth curve analyses revealed that metapodials generally grew at a faster rate, and for a longer duration, than corresponding phalanges. Our findings are consistent with the hypothesis that primates are under selection for increased grasping ability early in life. Relatively long digits may be functionally adaptive for growing capuchins, permitting a more secure grasp on both caregivers and arboreal supports, as well as facilitating early foraging. Additional studies of primates and other mammals, as well as tests of grasping performance, are required to fully evaluate the adaptive significance of primate hand and foot growth.  相似文献   

17.
The capitates of Australopithecus afarensis (AL 288-lw and AL 333–40) and A. africanus (TM 1526) have the identical combination of modern pongid, modern hominid, and unique characteristics. These traits include the combination of a length that is proximodistally shortened (Homo sapiens-like), a facet for the second metacarpal that is distolaterally facing (unique), the reduced styloid process on the third metacarpal (pongidlike), a dorsally placed trapezoid facet (pongidlike), mediolaterally constricted metacarpal III facet (pongidlike), a prominent palmar beak (pongidlike), a single elongated facet for the second metacarpal (H. sapiens-like), a waisted neck (pongidlike), and a reduced amount of “cupping” in the third metacarpal facet (H. sapiens-like). In overall shape the bones are more like H. sapiens than other extant hominids, although they are uniquely different. The two A. afarensis capitates provide no evidence that there are two postcranial morphotypes at Hadar. Available evidence shows that A. afarensis and A. africanus are strikingly similar postcranially. The morphological differences between the capitate of Australopithecus and H. sapiens may relate to the retention of climbing ability and an absence of certain grip capabilities in these early hominids.  相似文献   

18.
In response to a critique byFerguson (1989),Leonard (1991) reiterates most of his original arguments for supporting “Australopithecus afarensisJohanson, White, andCoppens, 1978 as a single species. He disregards the principle of morphological equivalence by comparing the dental metrics and morphology of a hominid with those of species of the Pongidae, which do not correspond with the degree of variation in hominids, instead of with those of species of the Hominidae. He fails to refute clear evidence that the range of variation of dental metrics and morphology in “A. afarensis” exceeds that seen in species of the Hominidae. On the basis of extreme variation, “A. afarensis” is, therefore, interpreted as representing a composite species.  相似文献   

19.
Functional reasons for specific changes in mammal foot skeleton occurring in course of formation and progressive evolution of locomotion on the parasagittal extremities are formulated for the first time. The paper establishes the base of the study of highly parasagittal forms (terrestrial catarhine monkeys, man and his ancestors), that evolved in primate history much later then their counterparts in other orders. The foot of primitive primate (Lemur catta) is scrutinized as a model of a primitive foot structure, that determined the peculiarities of foot evolution in higher forms. Primate foot traits as elements of general mammal foot evolution are described. Some specializations of the primate foot to the arboreal habitats are concluded to preclude the primate foot from progressing to the state inherent in highly advanced parasagittal members of other mammalian orders.  相似文献   

20.
Renewed fieldwork at Hadar, Ethiopia, from 1990 to 2007, by a team based at the Institute of Human Origins, Arizona State University, resulted in the recovery of 49 new postcranial fossils attributed to Australopithecus afarensis. These fossils include elements from both the upper and lower limbs as well as the axial skeleton, and increase the sample size of previously known elements for A. afarensis. The expanded Hadar sample provides evidence of multiple new individuals that are intermediate in size between the smallest and largest individuals previously documented, and so support the hypothesis that a single dimorphic species is represented. Consideration of the functional anatomy of the new fossils supports the hypothesis that no functional or behavioral differences need to be invoked to explain the morphological variation between large and small A. afarensis individuals. Several specimens provide important new data about this species, including new vertebrae supporting the hypothesis that A. afarensis may have had a more human-like thoracic form than previously appreciated, with an invaginated thoracic vertebral column. A distal pollical phalanx confirms the presence of a human-like flexor pollicis longus muscle in A. afarensis. The new fossils include the first complete fourth metatarsal known for A. afarensis. This specimen exhibits the dorsoplantarly expanded base, axial torsion and domed head typical of humans, revealing the presence of human-like permanent longitudinal and transverse arches and extension of the metatarsophalangeal joints as in human-like heel-off during gait. The new Hadar postcranial fossils provide a more complete picture of postcranial functional anatomy, and individual and temporal variation within this sample. They provide the basis for further in-depth analyses of the behavioral and evolutionary significance of A. afarensis anatomy, and greater insight into the biology and evolution of these early hominins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号