首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
As an alternative to X-ray crystallography, nuclear magnetic resonance (NMR) has also emerged as the method of choice for studying both protein structure and dynamics in solution. However, little work using computational models such as Gaussian network model (GNM) and machine learning approaches has focused on NMR-derived proteins to predict the residue flexibility, which is represented by the root mean square deviation (RMSD) with respect to the average structure. We provide a large-scale comparison of computational models, including GNM, parameter-free GNM and several linear regression models using local solvent exposures as inputs, based on a dataset of 1609 protein chains whose structures were resolved by NMR. The result again confirmed that the correlation of GNM outputs with raw RMSD values was better than that using B-factors of X-ray data. Nevertheless, it was also concluded that the parameter-free GNM and the solvent exposure based linear regression models performed worse than GNM when predicting RMSD, contrary to results using X-ray data. The discrepancy of residue flexibility prediction between NMR and X-ray data is likely attributable to a combination of their physical and methodological differences.  相似文献   

2.
A detailed analysis of high‐resolution structural data and computationally predicted dynamics was carried out for a designed sugar‐binding protein. The mean‐square deviations in the positions of residues derived from nuclear magnetic resonance (NMR) models and those inferred from X‐ray crystallographic B‐factors for two different crystal forms were compared with the predictions based on the Gaussian Network Model (GNM) and the results from molecular dynamics (MD) simulations. GNM systematically yielded a higher correlation than MD, with experimental data, suggesting that the lack of atomistic details in the coarse‐grained GNM is more than compensated for by the mathematically exact evaluation of fluctuations using the native contacts topology. Evidence is provided that particular loop motions are curtailed by intermolecular contacts in the crystal environment causing a discrepancy between theory and experiments. Interestingly, the information conveyed by X‐ray crystallography becomes more consistent with NMR models and computational predictions when ensembles of X‐ray models are considered. Less precise (broadly distributed) ensembles indeed appear to describe the accessible conformational space under native state conditions better than B‐factors. Our results highlight the importance of using multiple conformations obtained by alternative experimental methods, and analyzing results from both coarse‐grained models and atomic simulations, for accurate assessment of motions accessible to proteins under native state conditions. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Temiz NA  Meirovitch E  Bahar I 《Proteins》2004,57(3):468-480
The dynamics of adenylate kinase of Escherichia coli (AKeco) and its complex with the inhibitor AP(5)A, are characterized by correlating the theoretical results obtained with the Gaussian Network Model (GNM) and the anisotropic network model (ANM) with the order parameters and correlation times obtained with Slowly Relaxing Local Structure (SRLS) analysis of (15)N-NMR relaxation data. The AMPbd and LID domains of AKeco execute in solution large amplitude motions associated with the catalytic reaction Mg(+2)*ATP + AMP --> Mg(+2)*ADP + ADP. Two sets of correlation times and order parameters were determined by NMR/SRLS for AKeco, attributed to slow (nanoseconds) motions with correlation time tau( perpendicular) and low order parameters, and fast (picoseconds) motions with correlation time tau( parallel) and high order parameters. The structural connotation of these patterns is examined herein by subjecting AKeco and AKeco*AP(5)A to GNM analysis, which yields the dynamic spectrum in terms of slow and fast modes. The low/high NMR order parameters correlate with the slow/fast modes of the backbone elucidated with GNM. Likewise, tau( parallel) and tau( perpendicular) are associated with fast and slow GNM modes, respectively. Catalysis-related domain motion of AMPbd and LID in AKeco, occurring per NMR with correlation time tau( perpendicular), is associated with the first and second collective slow (global) GNM modes. The ANM-predicted deformations of the unliganded enzyme conform to the functional reconfiguration induced by ligand-binding, indicating the structural disposition (or potential) of the enzyme to bind its substrates. It is shown that NMR/SRLS and GNM/ANM analyses can be advantageously synthesized to provide insights into the molecular mechanisms that control biological function.  相似文献   

4.
Haliloglu T  Bahar I 《Proteins》1999,37(4):654-667
An analytical approach based on Gaussian network model (GNM) is proposed for predicting the rotational dynamics of proteins. The method, previously shown to successfully reproduce X-ray crystallographic temperature factors for a series of proteins is extended here to predict bond torsional mobilities and reorientation of main chain amide groups probed by 15N-H nuclear magnetic resonance (NMR) relaxation. The dynamics of hen egg-white lysozyme (HEWL) in the folded state is investigated using the proposed approach. Excellent agreement is observed between theoretical results and experimental (X-ray diffraction and NMR relaxation) data. The analysis reveals the important role of coupled rotations, or cross-correlations between dihedral angle librations, in defining the relaxation mechanism on a local scale. The crystal and solution structures exhibit some differences in their local motions, but their global motions are identical. Hinge residues mediating the cooperative movements of the alpha- and beta-domains are identified, which comprise residues in helix C, Glu35 and Ser36 on the loop succeeding helix B, Ile55 and Leu56 at the turn between strands II and III. The central part of the beta-domain long loop and the turn between strands I and II display an enhanced mobility. Finally, kinetically hot residues and key interactions are identified, which point at helix B and beta-strand III as the structural elements underlying the stability of the tertiary structure.  相似文献   

5.
Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X‐ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well‐suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR‐derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state‐of‐the‐art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution.  相似文献   

6.
Lezon TR 《Proteins》2012,80(4):1133-1142
Elastic network models provide an efficient way to quickly calculate protein global dynamics from experimentally determined structures. The model's single parameter, its force constant, determines the physical extent of equilibrium fluctuations. The values of force constants can be calculated by fitting to experimental data, but the results depend on the type of experimental data used. Here, we investigate the differences between calculated values of force constants and data from NMR and X-ray structures. We find that X-ray B factors carry the signature of rigid-body motions, to the extent that B factors can be almost entirely accounted for by rigid motions alone. When fitting to more refined anisotropic temperature factors, the contributions of rigid motions are significantly reduced, indicating that the large contribution of rigid motions to B factors is a result of over-fitting. No correlation is found between force constants fit to NMR data and those fit to X-ray data, possibly due to the inability of NMR data to accurately capture protein dynamics.  相似文献   

7.
The dynamic behavior of proteins in crystals is examined by comparing theory and experiments. The Gaussian network model (GNM) and a simplified version of the crystallographic translation libration screw (TLS) model are used to calculate mean square fluctuations of C(alpha) atoms for a set of 113 proteins whose structures have been determined by x-ray crystallography. Correlation coefficients between the theoretical estimations and experiment are calculated and compared. The GNM method gives better correlation with experimental data than the rigid-body libration model and has the added benefit of being able to calculate correlations between the fluctuations of pairs of atoms. By incorporating the effect of neighboring molecules in the crystal the correlation is further improved.  相似文献   

8.
ATP-binding cassette (ABC) transporters move solutes across membranes and are associated with important diseases, including cystic fibrosis and multi-drug resistance. These molecular machines are energized by their charateristic ABC modules, molecular engines fuelled by ATP hydrolysis. A solution NMR study of a model ABC, Methanococcus jannaschii protein MJ1267, reveals that ADP-Mg binding alters the flexibilities of key ABC motifs and induces allosteric changes in conformational dynamics in the LivG insert, over 30A away from the ATPase active site. (15)N spin relaxation data support a "selected-fit" model for nucleotide binding. Transitions between rigidity and flexibility in key motifs during the ATP hydrolysis cycle may be crucial to mechanochemical energy transduction in ABC transporters. The restriction of correlated protein motions is likely a central mechanism for allosteric communications. Comparison between dynamics data from NMR and X-ray crystallography reveals their overall consistency and complementarity.  相似文献   

9.
T K Harris  A S Mildvan 《Proteins》1999,35(3):275-282
We have compared hydrogen bond lengths on enzymes derived with high precision (< or = +/- 0.05 A) from both the proton chemical shifts (delta) and the fractionation factors (phi) of the proton involved with those obtained from protein X-ray crystallography. Hydrogen bond distances derived from proton chemical shifts were obtained from a correlation of 59 O--H....O hydrogen bond lengths, measured by small molecule high-resolution X-ray crystallography, with chemical shifts determined by solid-state nuclear magnetic resonance (NMR) in the same crystals (McDermott A, Ridenour CF, Encyclopedia of NMR, Sussex, U.K.: Wiley, 1996:3820-3825). Hydrogen bond distances were independently obtained from fractionation factors that yield distances between the two proton wells in quartic double minimum potential functions (Kreevoy MM, Liang TM, J Am Chem Soc, 1980;102:3315-3322). The high-precision hydrogen bond distances derived from their corresponding NMR-measured proton chemical shifts and fractionation factors agree well with each other and with those reported in protein X-ray structures within the larger errors (+/-0.2-0.8 A) in distances obtained by protein X-ray crystallography. The increased precision in measurements of hydrogen bond lengths by NMR has provided insight into the contributions of short, strong hydrogen bonds to catalysis for several enzymatic reactions.  相似文献   

10.
The SPRY domain was identified originally as a sequence repeat in the dual-specificity kinase splA and ryanodine receptors and subsequently found in many other distinct proteins, including more than 70 encoded in the human genome. It is a subdomain of the B30.2/SPRY domain and is believed to function as a protein-protein interaction module. Three-dimensional structures of several B30.2/SPRY domain-containing proteins have been reported recently: murine SSB-2 in solution by NMR spectroscopy, a Drosophila SSB (GUSTAVUS), and human PRYSPRY protein by X-ray crystallography. The three structures share a core of two antiparallel beta-sheets for the B30.2/SPRY domain but show differences located mainly at one end of the beta-sandwich. Analysis of SSB-2 residues required for interactions with its intracellular ligands has provided insights into B30.2/SPRY binding specificity and identified loop residues critical for the function of this domain. We have investigated the backbone dynamics of SSB-2 by means of Modelfree analysis of its backbone (15)N relaxation parameters and carried out coarse-grained dynamics simulation of B30.2/SPRY domain-containing proteins using normal mode analysis. Translational self-diffusion coefficients of SSB-2 measured using pulsed field gradient NMR were used to confirm the monomeric state of SSB-2 in solution. These results, together with previously reported amide exchange data, highlight the underlying flexibility of the loop regions of B30.2/SPRY domain-containing proteins that have been shown to be important for protein-protein interactions. The underlying flexibility of certain regions of the B30.2/SPRY domain-containing proteins may also contribute to some apparent structural differences observed between GUSTAVUS or PRYSPRY and SSB-2.  相似文献   

11.
A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 310-helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.  相似文献   

12.
BACKGROUND: While X-ray crystallography structures of proteins are considerably more reliable than those from NMR spectroscopy, it has been difficult to assess the inherent accuracy of NMR structures, particularly the side chains. RESULTS: For 15 small single-domain proteins, we used a molecular mechanics-/dynamics-based free-energy approach to investigate native, decoy, and fully extended alpha conformations. Decoys were all less energetically favorable than native conformations in nine of the ten X-ray structures and in none of the five NMR structures, but short 150 ps molecular dynamics simulations on the experimental structures caused them to have the lowest predicted free energy in all 15 proteins. In addition, a strong correlation exists (r(2) = 0.86) between the predicted free energy of unfolding, from native to fully extended conformations, and the number of residues. CONCLUSIONS: This work suggests that the approximate treatment of solvent used in solving NMR structures can lead NMR model conformations to be less reliable than crystal structures. This conclusion was reached because of the considerably higher calculated free energies and the extent of structural deviation during aqueous dynamics simulations of NMR models compared to those determined by X-ray crystallography. Also, the strong correlation found between protein length and predicted free energy of unfolding in this work suggests, for the first time, that a free-energy function can allow for identification of the native state based on calculations on an extended state and in the absence of an experimental structure.  相似文献   

13.
The solution structure of Nereis diversicolor sarcoplasmic calcium-binding protein (NSCP) in the calcium-bound form was determined by NMR spectroscopy, distance geometry and simulated annealing. Based on 1859 NOE restraints and 262 angular restraints, 17 structures were generated with a rmsd of 0.87 A from the mean structure. The solution structure, which is highly similar to the structure obtained by X-ray crystallography, includes two open EF-hand domains, which are in close contact through their hydrophobic surfaces. The internal dynamics of the protein backbone were determined by studying amide hydrogen/deuterium exchange rates and 15N nuclear relaxation. The two methods revealed a highly compact and rigid structure, with greatly restricted mobility at the two termini. For most of the amide protons, the free energy of exchange-compatible structural opening is similar to the free energy of structural stability, suggesting that isotope exchange of these protons takes place through global unfolding of the protein. Enhanced conformational flexibility was noted in the unoccupied Ca2+-binding site II, as well as the neighbouring helices. Analysis of the experimental nuclear relaxation and the molecular dynamics simulations give very similar profiles for the backbone generalized order parameter (S2), a parameter related to the amplitude of fast (picosecond to nanosecond) movements of N(H)-H vectors. We also noted a significant correlation between this parameter, the exchange rate, and the crystallographic B factor along the sequence.  相似文献   

14.
To assess the accuracy of the molecular dynamics (MD) models of nucleic acids, a detailed comparison between MD-calculated and NMR-observed indices of the dynamical structure of DNA in solution has been carried out. The specific focus of our comparison is the oligonucleotide duplex, d(CGCGAATTCGCG)(2), for which considerable structural data have been obtained from crystallography and NMR spectroscopy. An MD model for the structure of d(CGCGAATTCGCG)(2) in solution, based on the AMBER force field, has been extended with a 14 ns trajectory. New NMR data for this sequence have been obtained in order to allow a detailed and critical comparison between the calculated and observed parameters. Observable two-dimensional (2D) nuclear Overhauser effect spectroscopy (NOESY) volumes and scalar coupling constants were back-calculated from the MD trajectory and compared with the corresponding NMR data. The comparison of these results indicate that the MD model is in generally good agreement with the NMR data, and shows closer accord with experiment than back-calculations based on the crystal structure of d(CGCGAATTCGCG)(2) or the canonical A or B forms of the sequence. The NMR parameters are not particularly sensitive to the known deficiency in the AMBER MD model, which is a tendency toward undertwisting of the double helix when the parm.94 force field is used. The MD results are also compared with a new determination of the solution structure of d(CGCGAATTCGCG)(2) using NMR dipolar coupling data.  相似文献   

15.
Tiede DM  Zhang R  Seifert S 《Biochemistry》2002,41(21):6605-6614
We demonstrate the use of high-angle X-ray scattering to explore protein conformational states in solution by resolving oxidation state- and temperature-dependent changes in the conformation of horse heart cytochrome c. Several detailed models exist for oxidation-dependent changes in mitochondrial class I c cytochromes determined by X-ray crystallography and solution NMR techniques. These models differ in the magnitude and locations of structural change. Our scattering measurements show that high-angle X-ray scattering can discriminate between these models, and that the experimental scattering data for horse cytochrome c can be best reconciled with selected NMR models for the same protein. These results demonstrate the ability to use high-angle X-ray scattering to resolve conformational states of proteins in solution, and to relate these measurements to detailed structural models. Furthermore, temperature-dependent changes are found in the high angle scattering patterns for horse cytochrome c, illustrating the sensitivity of these measurements to dynamic aspects of protein structure. These results demonstrate the ability to use difference high angle scattering as a quantitative monitor of reaction-linked changes in protein conformation and structural dynamics. Synchrotron-based high-angle scattering holds promise as a widely applicable, high throughput technique for exploring conformational states linked to physiological protein function, for resolving configurational differences between protein structures in solution and crystalline states, and for bridging the gap between solution NMR and crystallographic structure techniques.  相似文献   

16.
The N-glycan at Asn297 of the immunoglobulin G Fc fragment modulates cellular responses of the adaptive immune system. However, the underlying mechanism remains undefined, as existing structural data suggest the glycan does not directly engage cell surface receptors. Here we characterize the dynamics of the glycan termini using solution NMR spectroscopy. Contrary to previous conclusions based on X-ray crystallography and limited NMR data, our spin relaxation studies indicate that the termini of both glycan branches are highly dynamic and experience considerable motion in addition to tumbling of the Fc molecule. Relaxation dispersion and temperature-dependent chemical shift perturbations demonstrate exchange of the α1-6Man-linked branch between a protein-bound and a previously unobserved unbound state, suggesting the glycan samples conformational states that can be accessed by glycan-modifying enzymes and possibly glycan recognition domains. These findings suggest a role for Fc-glycan dynamics in Fc-receptor interactions and enzymatic glycan remodeling.  相似文献   

17.
Summary NMR as well as X-ray crystallography are used to determine the three-dimensional structures of macromolecules at atomic resolution. Structure calculation generates coordinates that are compatible with NMR data from randomly generated initial structures. We analyzed the trajectory taken by structures during NMR structure calculation in conformational space, assuming that the distance between two structures in conformational space is the root-mean-square deviation between the two structures. The coordinates of a structure in conformational space were obtained by applying the metric multidimensional scaling method. As an example, we used a 22-residue peptide, -Conotoxin GIIIA, and a simulated annealing protocol of XPLOR. We found that the three-dimensional solution of the multidimensional scaling analysis is sufficient to describe the overall configuration of the trajectories in conformational space. By comparing the trajectories of the entire calculation with those of the converged calculation, random sampling of conformational space is readily discernible. Trajectory analysis can also be used for optimization of protocols of NMR structure calculation, by examining individual trajectories.Abbreviations MD molecular dynamics - MDS multidimensional scaling - rmsd root-mean-square deviation - armsd angular rmsd - R multiple correlation coefficient - YASAP yet another simulated annealing protocol - PCA principal component analysis  相似文献   

18.
The NMR solution structures of NTX-1 (PDB code 1W6B and BMRB 6288), a long neurotoxin isolated from the venom of Naja naja oxiana, and the molecular dynamics simulation of these structures are reported. Calculations are based on 1114 NOEs, 19 hydrogen bonds, 19 dihedral angle restraints and secondary chemical shifts derived from 1H to 13C HSQC spectrum. Similar to other long neurotoxins, the three-finger like structure shows a double and a triple stranded beta-sheet as well as some flexible regions, particularly at the tip of loop II and the C-terminal tail. The solution NMR and molecular dynamics simulated structures are in good agreement with root mean square deviation values of 0.23 and 1 A for residues involved in beta-sheet regions, respectively. The overall fold in the NMR structure is similar to that of the X-ray crystallography, although some differences exist in loop I and the tip of loop II. The most functionally important residues are located at the tip of loop II and it appears that the mobility and the local structure in this region modulate the binding of NTX-1 and other long neurotoxins to the nicotinic acetylcholine receptor.  相似文献   

19.
Cycling between a GTP bound "on" state and a GDP bound "off" state, guanine nucleotide-binding (GNB) proteins act as molecular switches. The switching process and the interaction with effectors, GTPase-activating proteins, and guanosine nucleotide-exchange factors is accompanied by pronounced conformational changes of the switch regions of the GNB proteins. The aim of the present contribution is to correlate conformational changes observed by liquid-state NMR with solid-state (31)P NMR data and with the results of X-ray crystallography. Crystalline wild-type Ras complexed with GTP analogs such as GppCH(2)p and GppNHp could be prepared. At low temperatures, two different signals were found for the gamma-phosphate group of GppNHp bound to wild-type Ras. This behavior indicates the existence of two different conformations of the molecule in the crystalline state as it is found in solution but not by X-ray crystallography. In contrast to the GppNHp complex, the two separate gamma-phosphate signals could not be observed for GppCH(2)p bound to wild-type Ras. However, an increasing linewidth at low temperature indicates the presence of an exchange process. The results obtained for the wild-type protein are compared with the behavior of GppNHp complexes of the effector loop mutants Ras(T35S) and Ras(T35A). These mutants prefer a conformation similar to the GDP bound "off" state.  相似文献   

20.
Schwieters CD  Clore GM 《Biochemistry》2007,46(5):1152-1166
The structure and dynamics of the Dickerson DNA dodecamer [5'd(CGCGAATTCGCG)2] in solution have been investigated by joint simulated annealing refinement against NMR and large-angle X-ray scattering data (extending from 0.25 to 3 A-1). The NMR data comprise an extensive set of hetero- and homonuclear residual dipolar coupling and 31P chemical shift anisotropy restraints in two alignment media, supplemented by NOE and 3J coupling data. The NMR and X-ray scattering data cannot be fully ascribed to a single structure representation, indicating the presence of anisotropic motions that impact the experimental observables in different ways. Refinement with ensemble sizes (Ne) of >or=2 to represent the atomic motions reconciles all the experimental data within measurement error. Cross validation against both the dipolar coupling and X-ray scattering data suggests that the optimal ensemble size required to account for the current data is 4. The resulting ensembles permit one to obtain a detailed view of the conformational space sampled by the dodecamer in solution and permit one to analyze fluctuations in helicoidal parameters, sugar puckers, and BI-BII backbone transitions and to obtain quantitative metrics of atomic motion such as generalized order parameters and thermal B factors. The calculated order parameters are in good agreement with experimental order parameters obtained from 13C relaxation measurements. Although DNA behaves as a relatively rigid rod with a persistence length of approximately 150 bp, dynamic conformational heterogeneity at the base pair level is functionally important since it readily permits optimization of intermolecular protein-DNA interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号