首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron reduction and uptake was studied in wild-type and haem-deficient strains of Saccharomyces cerevisiae. Haem-deficient strains lacked inducible ferri-reductase activity and were unable to take up iron from different ferric chelates such as Fe(III)-citrate or rhodoturulic acid. In contrast, ferrioxamine B was taken up actively by the mutants as well as by the wild-type strains. At a low extracellular concentration, uptake was insensitive to ferrozine and competitively inhibited by Ga(III)-desferrioxamine B. Extracellular reductive dissociation of the siderophore occurred at higher extracellular concentrations. Two mechanisms appear to contribute to the uptake of ferrioxamine B by S. cerevisiae: one with high affinity, by which the siderophore is internalized as such and another with lower affinity by which iron is dissociated from the ligand prior to uptake.  相似文献   

2.
Ammonia assimilation by Saccharomyces cerevisiae   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

3.
Ferric iron reduction by sulfur- and iron-oxidizing bacteria.   总被引:21,自引:11,他引:10       下载免费PDF全文
Acidophilic bacteria of the genera Thiobacillus and Sulfolobus are able to reduce ferric iron when growing on elemental sulfur as an energy source. It has been previously thought that ferric iron serves as a nonbiological oxidant in the formation of acid mine drainage and in the leaching of ores, but these results suggest that bacterial catalysis may play a significant role in the reactivity of ferric iron.  相似文献   

4.
Summary The tetrazolium salt, 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) was used to determine viable respiring cells in batch cultures of Saccharomyces cerevisiae. Respiring cells reduce INT to water insoluble iodonitrotetrazolium formazan (INT-formazan) which is deposited within the respiring cell. The INT-formazan granules can be observed by brightfield microscopy. This allows a rapid quantitative determination of the percentage of respiring cells and total cells within the same microscopic field.In actively growing batch cultures of S. cerevisiae, the respiring cell count was equal to the total cell count for the first 72 h of the growth cycle. After 144 h of incubation only 22.7% of the total cell numbers were actively respiring.  相似文献   

5.
Large-scale transitions in genome size from tetraploid to diploid were observed during a previous 1800-generation evolution experiment in Saccharomyces cerevisiae. Whether the transitions occurred via a one-step process (tetraploid to diploid) or through multiple steps (through ploidy intermediates) remained unclear. To provide insight into the mechanism involved, we investigated whether triploid-sized cells sampled from the previous experiment could also undergo ploidy loss. A batch culture experiment was conducted for approximately 200 generations, starting from four triploid-sized colonies and one contemporaneous tetraploid-sized colony. Ploidy reduction towards diploidy was observed in both triploid and tetraploid lines. Comparative genomic hybridization indicated the presence of aneuploidy in both the founder and the evolved colonies. The specific aneuploidies involved suggest that chromosome loss was not haphazard but that nearly full sets of chromosomes were lost at once, with some additional chromosome mis-segregation events. These results suggest the existence of a mitotic mechanism allowing the elimination of an entire set of chromosomes in S. cerevisiae, thereby reducing the ploidy level.  相似文献   

6.
The assimilation of sulphate in Saccharomyces cerevisiae, comprising the reduction of sulphate to sulphide and the incorporation of the sulphur atom into a four-carbon chain, requires the integrity of 13 different genes. To date, the functions of nine of these genes are still not clearly established. A set of strains, each bearing a mutation in one MET gene, was studied. Phenotypic studies and enzyme determinations showed that the products of at least five genes are needed for the synthesis of an enzymically active sulphite reductase. These genes are MET1, MET5, MET8, MET10 and MET20. Wild-type strains of S. cerevisiae can use organic metabolites such as homocysteine, cysteine, methionine and S-adenosylmethionine as sulphur sources. They are also able to use inorganic sulphur sources such as sulphate, sulphite, sulphide or thiosulphate. Here we show that both of the two sulphur atoms of thiosulphate are used by S. cerevisiae. Thiosulphate is cleaved into sulphite and sulphide prior to utilization by the sulphate assimilation pathway, as the metabolism of one sulphur atom from thiosulphate requires the presence of an active sulphite reductase.  相似文献   

7.
8.
Summary In Saccharomyces cerevisiae, the products of eleven different genes are needed for a functional sulfate assimilation pathway. Only five enzymatic steps are known in this pathway. The study of the gene-enzyme relationships has shown that the enzymes catalysing two of these steps are probably heteropolymeric. Moreover, mutations in three unlinked genes lead to multiple enzymatic losses. Different hypotheses are made to account for these results.  相似文献   

9.
10.
Bioconversion of xylose—the second most abundant sugar in nature—into high-value fuels and chemicals by engineered Saccharomyces cerevisiae has been a long-term goal of the metabolic engineering community. Although most efforts have heavily focused on the production of ethanol by engineered S. cerevisiae, yields and productivities of ethanol produced from xylose have remained inferior as compared with ethanol produced from glucose. However, this entrenched focus on ethanol has concealed the fact that many aspects of xylose metabolism favor the production of nonethanol products. Through reduced overall metabolic flux, a more respiratory nature of consumption, and evading glucose signaling pathways, the bioconversion of xylose can be more amenable to redirecting flux away from ethanol towards the desired target product. In this report, we show that coupling xylose consumption via the oxidoreductive pathway with a mitochondrially-targeted isobutanol biosynthesis pathway leads to enhanced product yields and titers as compared to cultures utilizing glucose or galactose as a carbon source. Through the optimization of culture conditions, we achieve 2.6 g/L of isobutanol in the fed-batch flask and bioreactor fermentations. These results suggest that there may be synergistic benefits of coupling xylose assimilation with the production of nonethanol value-added products.  相似文献   

11.
12.
Iron is fundamental to many biological processes, but is also detrimental as it fosters the synthesis of destructive oxygen radicals. Recent experiments have increased our knowledge of the critical process of regulation of mitochondrial iron metabolism. A number of genes directly involved in iron homeostasis in this organelle have been identified. Intriguingly, a minor Hsp70 molecular chaperone of the mitochondrial matrix has been implicated as a player in this process as well.  相似文献   

13.
The yeast Saccharomyces cerevisiae can synthesize trehalose and also use this disaccharide as a carbon source for growth. However, the molecular mechanism by which extracellular trehalose can be transported to the vacuole and degraded by the acid trehalase Ath1p is not clear. By using an adaptation of the assay of invertase on whole cells with NaF, we showed that more than 90% of the activity of Ath1p is extracellular, splitting of the disaccharide into glucose. We also found that Agt1p-mediated trehalose transport and the hydrolysis of the disaccharide by the cytosolic neutral trehalase Nth1p are coupled and represent a second, independent pathway, although there are several constraints on this alternative route. First, the AGT1/MAL11 gene is controlled by the MAL system, and Agt1p was active in neither non-maltose-fermenting nor maltose-inducible strains. Second, Agt1p rapidly lost activity during growth on trehalose, by a mechanism similar to the sugar-induced inactivation of the maltose permease. Finally, both pathways are highly pH sensitive and effective growth on trehalose occurred only when the medium was buffered at around pH 5.0. The catabolism of trehalose was purely oxidative, and since levels of Ath1p limit the glucose flux in the cells, batch cultures on trehalose may provide a useful alternative to glucose-limited chemostat cultures for investigation of metabolic responses in yeast.  相似文献   

14.
Cofactor imbalance impedes xylose assimilation in Saccharomyces cerevisiae that has been metabolically engineered for xylose utilization. To improve cofactor use, we modified ammonia assimilation in recombinant S. cerevisiae by deleting GDH1, which encodes an NADPH-dependent glutamate dehydrogenase, and by overexpressing either GDH2, which encodes an NADH-dependent glutamate dehydrogenase, or GLT1 and GLN1, which encode the GS-GOGAT complex. Overexpression of GDH2 increased ethanol yield from 0.43 to 0.51 mol of carbon (Cmol) Cmol(-1), mainly by reducing xylitol excretion by 44%. Overexpression of the GS-GOGAT complex did not improve conversion of xylose to ethanol during batch cultivation, but it increased ethanol yield by 16% in carbon-limited continuous cultivation at a low dilution rate.  相似文献   

15.
16.
The activities of citrate synthase (EC 4.1.3.7) and NADP+-dependent glutamate dehydrogenase (GDH) (EC 1.4.1.4) of Saccharomyces cerevisiae were inhibited in vitro by glyoxylate. In the presence of glyoxylate, pyruvate and glyoxylate pools increased, suggesting that glyoxylate was efficiently transported and catabolized. Pyruvate accumulation also indicates that citrate synthase was inhibited. A decrease in the glutamate pool was also observed under these conditions. This can be attributed to an increased transamination rate and to the inhibitory effect of glyoxylate on NADP+-dependent GDH. Furthermore, the increase in the ammonium pool in the presence of glyoxylate suggests that NADP+-dependent GDH was being inhibited in vivo, since the activity of glutamine synthetase did not decrease under these conditions. We propose that the inhibition of both citrate synthase and NADP+-dependent GDH could form part of a mechanism that regulates the internal 2-oxoglutarate concentration.  相似文献   

17.
Enzymatic RNA reduction in disintegrated cells of Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
Degradation of UNA by endogenous RNase in cell suspensions of Saccharomyces cerevisiae was found to be achieved by mechanical disintegration followed by incubation in the presence of NaCl. The incubation parameters pH, temperature, time, and concentration of NaCl were investigated. Protein concentrates with a low content of RNA were obtained by precipitation of the incubated suspensions and separation of the degradation products. On a pilot plant scale the incubation was performed at 50°C and pH 5.6 in the presence of 3% NaCl for 20 min. Kilogram quantities of protein concentrates containing 1.4% RNA and 8.2% nitrogen were obtained. The RNA reduction and the nitrogen yield was 85 and 60%, respectively. The yield of amino acids was about 75%. The process described can probably be applied for large-scale production.  相似文献   

18.
19.
When ferrous iron and sulfur were supplied, cells of T. ferrooxidans in a well-aerated medium started growth by oxidizing ferrous iron. After ferrous iron depletion a lagphase followed before sulfur oxidation started. During sulfur oxidation at pH-values below 1.3 (±0,2) the ferrous iron concentration increased again, although the oxygen saturation of the medium amounted to more than 95%. The number of viable cells did not increase. Thus resting cells of T. ferrooxidans, which are oxidizing sulfur to maintain their proton balance, reduce ferric to ferrous iron. The ferrous iron-oxidizing system seemed to be inhibited at pH-values below 1.3. At a pH-value of 1.8 the ferrous iron was reoxidized at once. A scheme for the linkage of iron- and sulfur metabolism is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号