首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have recently shown that stimulation of endothelial cells with vascular endothelial growth factor (VEGF) induces dissociation of caveolin-1 from the VEGFR-2 receptor, followed by Src family kinase-dependent tyrosine phosphorylation of the protein (Labrecque, L., Royal, I., Surprenant, D. S., Patterson, C., Gingras, D., and Beliveau, R. (2003) Mol. Biol. Cell 14, 334-347). In this study, we provide evidence that the VEGF-dependent tyrosine phosphorylation of caveolin-1 induces interaction of the protein with the membrane-type 1 matrix metalloproteinase (MT1-MMP). This interaction requires the phosphorylation of caveolin-1 on tyrosine 14 by members of the Src family of protein kinases, such as Src and Fyn, because it is completely abolished by expression of a catalytically inactive Src mutant or by site-directed mutagenesis of tyrosine 14 of caveolin-1. Most interestingly, the association of MT1-MMP with phosphorylated caveolin-1 induced the recruitment of Src and a concomitant inhibition of the kinase activity of the enzyme, suggesting that this complex may be involved in the negative regulation of Src activity. The association of MT1-MMP with phosphorylated caveolin-1 occurs in caveolae membranes and involves the cytoplasmic domain of MT1-MMP because it was markedly reduced by mutation of Cys574 and Val582 residues of the cytoplasmic tail of the enzyme. Most interestingly, the reduction of the interaction between MT1-MMP and caveolin-1 by using these mutants also decreases MT1-MMP-dependent cell locomotion. Overall these results indicate that MT1-MMP associates with tyrosine-phosphorylated caveolin-1 and that this complex may play an important role in MT1-MMP regulation and function.  相似文献   

2.
Membrane type 1 matrix metalloproteinase (MT1-MMP) is a transmembrane MMP that plays important roles in migratory processes underlying tumor invasion and angiogenesis. In addition to its matrix degrading activity, MT1-MMP also contains a short cytoplasmic domain whose involvement in cell locomotion seems important but remains poorly understood. In this study, we show that MT1-MMP is phosphorylated on the unique tyrosine residue located within this cytoplasmic sequence (Tyr(573)) and that this phosphorylation requires the kinase Src. Using phosphospecific antibodies recognizing MT1-MMP phosphorylated on Tyr(573), we observed that tyrosine phosphorylation of the enzyme is rapidly induced upon stimulation of tumor and endothelial cells with the platelet-derived chemoattractant sphingosine-1-phosphate, suggesting a role in migration triggered by this lysophospholipid. Accordingly, overexpression of a nonphosphorylable MT1-MMP mutant (Y573F) blocked sphingosine-1-phosphate-induced migration of Human umbilical vein endothelial cells and HT-1080 (human fibrosarcoma) cells and failed to stimulate migration of cells lacking the enzyme (bovine aortic endothelial cells). Altogether, these findings strongly suggest that the Src-dependent tyrosine phosphorylation of MT1-MMP plays a key role in cell migration and further emphasize the importance of the cytoplasmic domain of the enzyme in this process.  相似文献   

3.
Proteolysis of extracellular matrix proteins by membrane-type 1 matrix metalloproteinase (MT1-MMP) plays a pivotal role in tumor and endothelial cell migration. In addition to its proteolytic activity, several studies indicate that the proinvasive properties of MT1-MMP also involve its short cytoplasmic domain, but the specific mechanisms mediating this function have yet to be fully elucidated. Having previously shown that the serum factor sphingosine 1-phosphate stimulates MT1-MMP promigratory function through a process that involves its cytoplasmic domain, we now extend these findings to show that this cooperative interaction is permissive to cellular migration through MT1-MMP-dependent transactivation of the epidermal growth factor receptor (EGFR). In the presence of sphingosine 1-phosphate, MT1-MMP stimulates EGFR transactivation through a process that is dependent upon the cytoplasmic domain of the enzyme but not its catalytic activity. The MT1-MMP-induced EGFR transactivation also involves G(i) protein signaling and Src activities and leads to enhanced cellular migration through downstream extracellular signal-regulated kinase activation. The present study, thus, elucidates a novel role of MT1-MMP in signaling events mediating EGFR transactivation and provides the first evidence of a crucial role of this receptor activity in MT1-MMP promigratory function. Taken together, our results suggest that the inhibition of EGFR may represent a novel target to inhibit MT1-MMP-dependent processes associated with tumor cell invasion and angiogenesis.  相似文献   

4.
Matrix metalloproteinase-2 (MMP-2) has been suggested to play a crucial role in tumor invasion and angiogenesis. In order to understand the mechanisms underlying proMMP-2 activation, we compared the biochemical and cellular events triggered by two potent MMP-2 activators, the lectin concanavalin A (ConA) and the cytoskeleton disrupting agent cytochalasin D (CytoD). Incubation of U87 human glioma cells for 24 h in the presence of ConA or CytoD induced a marked activation of proMMP-2 and this activation was correlated in both cases with an increase in the mRNA levels of MT1-MMP. At the protein level, proMMP-2 activation induced by CytoD or ConA strongly correlated with the appearance of a 43-kDa MT1-MMP proteolytic breakdown product in cell lysates. Interestingly, CytoD also induced a very rapid (2 h) activation of proMMP-2 that was independent of protein synthesis. Under these conditions, CytoD also promoted the rapid proteolytic breakdown of the 63 kDa pro form of MT1-MMP, resulting in the appearance of the 43 kDa MT1-MMP processed form. Overexpression of a recombinant full-length MT1-MMP protein in glioma cells resulted in the activation of proMMP-2 that was correlated with the generation of the 43 kDa fragment of the protein. By contrast, overexpression of the protein in COS-7 cells promoted proMMP-2 activation without inducing the production of the 43 kDa fragment. These results thus suggest that activation of proMMP-2 occurs through both translational and post-translational mechanisms, both involving proteolytic processing of membrane-associated MT1-MMP. This processing of MT1-MMP is, however, not essential to proMMP-2 activation but may represent a regulatory mechanism to control the activity of MT1-MMP.  相似文献   

5.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been suggested to play an essential role in angiogenesis. Based on recent evidence suggesting that the sprouting and branching of capillaries during angiogenesis involves apoptosis, we investigated the involvement of this process in MT1-MMP-dependent morphogenic differentiation of EC into capillary-like structures. We found that MT1-MMP sensitizes EC to apoptosis, since reduction of MT1-MMP expression abolished vimentin fragmentation in apoptotic HUVECs while overexpression of the enzyme induced caspase-3 activity in BAECs subjected to pro-apoptotic treatments. MT1-MMP-mediated caspase-3 activation likely occurs through the mitochondrial pathway since it was abrogated by Bcl-2, but not by CrmA overexpression. Reduction of MT1-MMP expression in HUVECs reduced morphogenic differentiation that was correlated with diminished vimentin fragmentation, whereas its overexpression in BAECs stimulated both processes. Inactivation of the catalytic activity or removal of the cytoplasmic domain of MT1-MMP markedly reduced its ability to induce both morphogenic differentiation and caspase-3 activation. The inhibitory effects of the anti-apoptotic protein Bcl-2 and the caspase inhibitor zVAD-fmk further suggested the involvement of apoptosis during MT1-MMP-mediated morphogenic differentiation. Our results show that the ability of MT1-MMP to induce EC morphogenic differentiation involves its activation of a caspase-dependent mechanism.  相似文献   

6.
Vascular endothelial growth factor (VEGF) appears to be a critical cytokine modulating the growth and spread of Kaposi's sarcoma (KS). Furthermore, infection with the KS herpes virus results in up-regulation of VEGF and triggering of VEGF receptor activation. The molecular mechanisms regulating such cytokine-driven proliferation of KS cells are not well characterized. We investigated the role of Src-related tyrosine kinases in VEGF-mediated signaling in model KS 38 tumor cells. VEGF stimulation specifically activated c-Src kinase activity but not that of other related Src kinases such as Lyn, Fyn, or Hck in KS cells. Pyrazolopyrimidine, a selective inhibitor of Src family tyrosine kinases, significantly blocked the VEGF-induced growth of KS cells. Further studies using mutants of c-Src kinase revealed that Src mediates mitogen-activated protein kinase activation induced by VEGF. We also observed that VEGF stimulation resulted in increased tyrosine phosphorylation of the focal adhesion components paxillin and p130cas. Furthermore, VEGF induction enhanced the complex formation between Src kinase and paxillin. Src kinase appears to play an important functional role in VEGF-induced signaling in KS cells and may act to link pathways from the VEGF receptor to mitogen-activated protein kinase and cytoskeletal components, thereby effecting tumor proliferation and migration.  相似文献   

7.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21WAF1 and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin αvβ3 were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.  相似文献   

8.
Increased production and activation of matrix metalloproteinase-2 (MMP-2) are critical events in skeletal muscle angiogenesis and are known to occur in response to mechanical stresses. We hypothesized that reorganization of the actin cytoskeleton would increase endothelial cell production and activation of MMP-2 and that this increase would require a MAPK-dependent signaling pathway in endothelial cells. The pharmacological actin depolymerization agent cytochalasin D increased expression of MMP-2 and membrane type 1-matrix metalloproteinase (MT1-MMP) mRNA, and this was reduced significantly in the presence of the JNK inhibitor SP600125. Activation of JNK by anisomycin was sufficient to induce expression of both MMP-2 and MT1-MMP mRNA in quiescent cells. Downregulation of c-Jun, a downstream target of JNK, with small interference (si)RNA inhibited MMP-2 expression in response to anisomycin. Inhibition of phosphoinositide 3-kinase (PI3K), but not JNK, significantly decreased the amount of active MMP-2 following cytochalasin D stimulation with a concurrent decrease in MT1-MMP protein. Physiological reorganization of actin occurs during VEGF stimulation. VEGF-induced MMP-2 protein production and activation, as well as MT1-MMP protein production, depended on PI3K activity. VEGF-induced MMP-2 mRNA expression was reduced by inhibition of JNK or by treatment with c-Jun siRNA. In summary, our results provide novel insight into the signaling cascades initiated in the early stages of angiogenesis through the reorganization of the actin cytoskeleton and demonstrate a critical role for JNK in regulating MMP-2 and MT1-MMP mRNA expression, whereas PI3K regulates protein levels of both MMP-2 and MT1-MMP. angiogenesis; mechanotransduction; vascular endothelial growth factor; c-Jun; phosphoinositide 3-kinase; membrane type 1-matrix metalloproteinase  相似文献   

9.
Membrane-type 1 matrix metalloproteinase (MT1-MMP), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades a variety of extracellular matrix (ECM) components. In addition, MT1-MMP activates intracellular signaling through proteolysis-dependent and independent mechanisms. We have previously shown that binding of tissue inhibitor of metalloproteinases-2 (TIMP-2) to MT1-MMP controls cell proliferation and migration, as well as tumor growth in vivo by activating the Ras—extracellular signal regulated kinase-1 and -2 (ERK1/2) pathway through a mechanism that requires the cytoplasmic but not the proteolytic domain of MT1-MMP. Here we show that in MT1-MMP expressing cells TIMP-2 also induces rapid and sustained activation of AKT in a dose- and time-dependent manner and by a mechanism independent of the proteolytic activity of MT1-MMP. Fibroblast growth factor receptor-1 mediates TIMP-2 induction of ERK1/2 but not of AKT activation; however, Ras activation is necessary to transduce the TIMP-2-activated signal to both the ERK1/2 and AKT pathways. ERK1/2 and AKT activation by TIMP-2 binding to MT1-MMP protects tumor cells from apoptosis induced by serum starvation. Conversely, TIMP-2 upregulates apoptosis induced by three-dimensional type I collagen in epithelial cancer cells. Thus, TIMP-2 interaction with MT1-MMP provides tumor cells with either pro- or anti-apoptotic signaling depending on the extracellular environment and apoptotic stimulus.  相似文献   

10.
Herein, we report that vascular endothelial growth factor A (VEGF-A) engages the PI3K/Akt pathway by a previously unknown mechanism that involves three tyrosine kinases. Upon VEGF-A-dependent activation of VEGF receptor-2 (VEGFR-2), and subsequent TSAd-mediated activation of Src family kinases (SFKs), SFKs engage the receptor tyrosine kinase Axl via its juxtamembrane domain to trigger ligand-independent autophosphorylation at a pair of YXXM motifs that promotes association with PI3K and activation of Akt. Other VEGF-A-mediated signalling pathways are independent of Axl. Interfering with Axl expression or function impairs VEGF-A- but not bFGF-dependent migration of endothelial cells. Similarly, Axl null mice respond poorly to VEGF-A-induced vascular permeability or angiogenesis, whereas other agonists induce a normal response. These results elucidate the mechanism by which VEGF-A activates PI3K/Akt, and identify previously unappreciated potential therapeutic targets of VEGF-A-driven processes.  相似文献   

11.
Bone marrow-derived stromal cells (BMSC) are avidly recruited by experimental vascularizing tumors, which implies that they must respond to tumor-derived growth factor cues. In fact, BMSC chemotaxis and cell survival are regulated, in part, by the membrane type-1 matrix metalloproteinase (MT1-MMP), an MMP also involved in pro-MMP-2 activation and in degradation of the extracellular matrix (ECM). Given that impaired chemotaxis was recently observed in bone marrow cells isolated from a glucose 6-phosphate transporter-deficient (G6PT-/-) mouse model, we sought to investigate the potential MT1-MMP/G6PT signaling axis in BMSC. We show that MT1-MMP-mediated activation of pro-MMP-2 by concanavalin A (ConA) correlated with an increase in the sub-G1 cell cycle phase as well as with cell necrosis, indicative of a decrease in BMSC survival. BMSC isolated from Egr-1-/- mouse or MT1-MMP gene silencing in BMSC with small interfering RNA (siMT1-MMP) antagonized both the ConA-mediated activation of pro-MMP-2 and the induction of cell necrosis. Overexpression of recombinant full-length MT1-MMP triggered necrosis and this was signaled through the cytoplasmic domain of MT1-MMP. ConA inhibited both the gene and protein expression of G6PT, while overexpression of recombinant G6PT inhibited MT1-MMP-mediated pro-MMP-2 activation but could not rescue BMSC from ConA-induced cell necrosis. Cell chemotaxis in response to the tumorigenic growth factor sphingosine 1-phosphate was significantly abrogated in siMT1-MMP BMSC and in chlorogenic acid-treated BMSC. Altogether, we provide evidence for an MT1-MMP/G6PT signaling axis that regulates BMSC survival, ECM degradation, and mobilization. This may lead to optimized clinical applications that use BMSC as a platform for the systemic delivery of therapeutic or anti-cancer recombinant proteins in vivo.  相似文献   

12.
This study examined whether retarded angiogenesis in a hypertension animal model was associated with impaired VEGF signaling. Furthermore, we sought to determine whether this impairment could be overcome by VEGF addition. Using a rat sponge implantation model, we confirmed impaired angiogenesis in spontaneous hypertensive rats (SHRs). Fourteen days after sponge implantation, the level of angiogenesis in SHRs was approximately half of those in age-matched normotensive Wistar-Kyoto or Sprague-Dawley rats. Significantly, expression of kinase-insert domain-containing receptor (KDR) and membrane type 1 matrix metalloproteinase (MT1-MMP) was reduced in SHRs compared to controls. Immunohistological analysis indicated endothelial proliferation was decreased in SHRs. Gene transfer of human VEGF(121) increased KDR and MT1-MMP expression in SHRs. VEGF(121) also up-regulated endothelial proliferation and angiogenesis. Our results indicate down-regulated KDR and MT1-MMP expression is associated with an impaired angiogenesis in SHRs. VEGF gene transfer is effective in ameliorating the impaired angiogenesis in SHRs.  相似文献   

13.
The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases.  相似文献   

14.
Vascular endothelial growth factor (VEGF) is a potent mediator of angiogenesis and vascular permeability, in which c-Src tyrosine kinase plays an essential role. However, the mechanisms by which VEGF stimulates c-Src activation have remained unclear. Here, we demonstrate that vascular endothelial cadherin (VE-cadherin) plays a critical role in regulating c-Src activation in response to VEGF. In vascular endothelial cells, VE-cadherin was basally associated with c-Src and Csk (C-terminal Src kinase), a negative regulator of Src activation. VEGF stimulated Csk release from VE-cadherin by recruiting the protein tyrosine phosphatase SHP2 to VE-cadherin signaling complex, leading to an increase in c-Src activation. Silencing VE-cadherin with small interference RNA significantly reduced VEGF-stimulated c-Src activation. Disrupting the association of VE-cadherin and Csk through the reconstitution of Csk binding-defective mutant of VE-cadherin also diminished Src activation. Moreover, inhibiting SHP2 by small interference RNA and adenovirus-mediated expression of a catalytically inactive mutant of SHP2 attenuated c-Src activation by blocking the disassociation of Csk from VE-cadherin. Furthermore, VE-cadherin and SHP2 differentially regulates VEGF downstream signaling. The inhibition of c-Src, VE-cadherin, and SHP2 diminished VEGF-mediated activation of Akt and endothelial nitric-oxide synthase. In contrast, inhibiting VE-cadherin and SHP2 enhanced ERK1/2 activation in response to VEGF. These findings reveal a novel role for VE-cadherin in modulating c-Src activation in VEGF signaling, thus providing new insights into the importance of VE-cadherin in VEGF signaling and vascular function.  相似文献   

15.
Vascular endothelial cell growth factor-A(165) (VEGF-A(165)) is critical for angiogenesis. Although protein kinase C-mediated protein kinase D(PKD)activation was implicated in the response, the detailed mechanism remains unclear. In this study, we found that VEGF-A(165)-stimulated tyrosine phosphorylation of PKD and the dominant negative mutant of PKD, PKD(Y463F), inhibited VEGF-A(165)-induced human umbilical vein endothelial cell (HUVEC) proliferation. In addition, PKD(S738A/S742A) overexpression inhibited VEGF-induced HUVEC migration. Furthermore, knockdown of PKD by its specific small interfering RNA inhibited VEGF-induced HUVEC proliferation and migration. Moreover transfection of PKD(Y463F), PKD(S738A/S742A), or PKD-small interfering RNA blocked VEGF-induced angiogenesis in vivo. Our signaling experiments show that KDR not Flt-1 mediated PKD tyrosine phosphorylation and KDR tyrosine residues 951 and 1059 were required for VEGF-A(165)-stimulated PKD serine and tyrosine phosphorylation, respectively. Whereas G protein Gbetagamma subunits were required for both PKD serine phosphorylation and tyrosine phosphorylation, intracellular Ca(2+) mobilization was required for VEGF-A(165)-stimulated PKD tyrosine phosphorylation and phospholipase C (PLC) activity was required for PKD serine phosphorylation. Surprisingly, the PLC inhibitor did not inhibit PKD tyrosine phosphorylation. Instead, PKD tyrosine 463 was required for VEGF-A(165)-stimulated PLCgamma tyrosine phosphorylation. Moreover, PKD interacted with PLCgamma even in unstimulated cells, and PKD tyrosine 463 phosphorylation was not required for this interaction. Together, we demonstrate that PKD interacts with PLCgamma and becomes tyrosine phosphorylated upon VEGF stimulation, leading to PLCgamma activation and angiogenic response of VEGF-A(165).  相似文献   

16.
17.
18.
We examined the mechanism regulating intercellular cell adhesion molecule-1 (ICAM-1)-dependent monocyte transendothelial migration. Monocyte migration through endothelial cells expressing ICAM-1 alone was comparable to that of tumor necrosis factor-alpha-treated cells. Transmigration was reduced in ICAM-1 lacking the cytoplasmic tail and in tyrosine to alanine substitutions at Tyr-485 and Tyr-474. Tissue inhibitors of matrix metalloproteinases (TIMPs) -2 and -3 blocked transmigration, whereas TIMP-1 was ineffective. This profile suggested a role for membrane-type matrix metalloproteinases (MT-MMPs) in transmigration. Inhibitory antibodies and small interference RNA directed against MT1-MMP blocked transmigration, whereas overexpression of MT1-MMP in endothelial cells or monocytes promoted transmigration. MT1-MMP mediated the ectodomain cleavage of ICAM-1 that was blocked by TIMP-2 and -3. Overexpression of MT1-MMP rescued function in ICAM-1Y485A, and to a lesser extent in the cytoplasmic tail-deleted ICAM-1. In a binding assay, wild-type ICAM-1 bound to purified MT1-MMP while ICAM-1 mutants bound poorly. MT1-MMP co-localized with ICAM-1 at distinct structures in endothelial cells. MT1-MMP localization with cells expressing ICAM-1 mutations was reduced and diffused. These results indicate that the cytoplasmic tail of ICAM-1 regulates leukocyte transmigration through MT1-MMP interaction.  相似文献   

19.
Membrane-type 1 matrix metalloproteinase (MT1-MMP), a transmembrane proteinase with a short cytoplasmic domain and an extracellular catalytic domain, controls a variety of physiological and pathological processes through the proteolytic degradation of extracellular or transmembrane proteins. MT1-MMP forms a complex on the cell membrane with its physiological protein inhibitor, tissue inhibitor of metalloproteinases-2 (TIMP-2). Here we show that, in addition to extracellular proteolysis, MT1-MMP and TIMP-2 control cell proliferation and migration through a non-proteolytic mechanism. TIMP-2 binding to MT1-MMP induces activation of ERK1/2 by a mechanism that does not require the proteolytic activity and is mediated by the cytoplasmic tail of MT1-MMP. MT1-MMP-mediated activation of ERK1/2 up-regulates cell migration and proliferation in vitro independently of extracellular matrix proteolysis. Proteolytically inactive MT1-MMP promotes tumor growth in vivo, whereas proteolytically active MT1-MMP devoid of cytoplasmic tail does not have this effect. These findings illustrate a novel role for MT1-MMP-TIMP-2 interaction, which controls cell functions by a mechanism independent of extracellular matrix degradation.  相似文献   

20.
We evaluated cellular mechanisms involved in the activation pathway of matrix prometalloproteinase-2 (pro-MMP-2), an enzyme implicated in the malignant progression of many tumor types. Membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves the N-terminal prodomain of pro-MMP-2 thus generating the activation intermediate that then matures into the fully active enzyme of MMP-2. Our results provide evidence on how a collaboration between MT1-MMP and integrin alphavbeta3 promotes more efficient activation and specific, transient docking of the activation intermediate and, further, the mature, active enzyme of MMP-2 at discrete regions of cells. We show that coexpression of MT1-MMP and integrin alphavbeta3 in MCF7 breast carcinoma cells specifically enhances in trans autocatalytic maturation of MMP-2. The association of MMP-2's C-terminal hemopexin-like domain with those molecules of integrin alphavbeta3 which are proximal to MT1-MMP facilitates MMP-2 maturation. Vitronectin, a specific ligand of integrin alphavbeta3, competitively blocked the integrin-dependent maturation of MMP-2. Immunofluorescence and immunoprecipitation studies supported clustering of MT1-MMP and integrin alphavbeta3 at discrete regions of the cell surface. Evidently, the identified mechanisms appear to be instrumental to clustering active MMP-2 directly at the invadopodia and invasive front of alphavbeta3-expressing cells or in their close vicinity, thereby accelerating tumor cell locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号