首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Breeding programs to conserve diversity are predicated on the assumption that genetic variation in adaptively important traits will be lost in parallel to the loss of variation at neutral loci. To test this assumption, we monitored quantitative traits across 18 generations of Peromyscus leucopus mice propagated with protocols that mirror breeding programs for threatened species. Ears, hind feet, and tails became shorter, but changes were reversible by outcrossing and therefore were due to accumulated inbreeding. Heritability of ear length decreased, because of an increase in phenotypic variance rather than the expected decrease in additive genetic variance. Additive genetic variance in hind foot length increased. This trait initially had low heritability but large dominance or common environmental variance contributing to resemblance among full-sibs. The increase in the additive component indicates that there was conversion of interaction variances to additive variance. For no trait did additive genetic variation decrease significantly across generations. These findings indicate that the restructuring of genetic variance that occurs with genetic drift and novel selection in captivity can prevent or delay the loss of phenotypic and heritable variation, providing variation on which selection can act to adapt populations to captivity and perhaps later to readapt to more natural habitats after release. Therefore, the importance of minimizing loss of gene diversity from conservation breeding programs for threatened wildlife species might lie in preventing immediate reduction in individual fitness due to inbreeding and protecting allelic diversity for long-term evolutionary change, more so than in protecting variation in quantitative traits for rapid re-adaptation to wild environments.  相似文献   

2.
Bost B  Dillmann C  de Vienne D 《Genetics》1999,153(4):2001-2012
The fluxes through metabolic pathways can be considered as model quantitative traits, whose QTL are the polymorphic loci controlling the activity or quantity of the enzymes. Relying on metabolic control theory, we investigated the relationships between the variations of enzyme activity along metabolic pathways and the variations of the flux in a population with biallelic QTL. Two kinds of variations were taken into account, the variation of the average enzyme activity across the loci, and the variation of the activity of each enzyme of the pathway among the individuals of the population. We proposed analytical approximations for the flux mean and variance in the population as well as for the additive and dominance variances of the individual QTL. Monte Carlo simulations based on these approximations showed that an L-shaped distribution of the contributions of individual QTL to the flux variance (R(2)) is consistently expected in an F(2) progeny. This result could partly account for the classically observed L-shaped distribution of QTL effects for quantitative traits. The high correlation we found between R(2) value and flux control coefficients variance suggests that such a distribution is an intrinsic property of metabolic pathways due to the summation property of control coefficients.  相似文献   

3.
A Building Block Model for Quantitative Genetics   总被引:2,自引:2,他引:0       下载免费PDF全文
H. Tachida  C. C. Cockerham 《Genetics》1989,121(4):839-844
We introduce a quantitative genetic model for multiple alleles which permits the parameterization of the degree, D, of dominance of favorable or unfavorable alleles. We assume gene effects to be random from some distribution and independent of the D's. We then fit the usual least-squares population genetic model of additive and dominance effects in an infinite equilibrium population to determine the five genetic components--additive variance sigma 2 a, dominance variance sigma 2 d, variance of homozygous dominance effects d2, covariance of additive and homozygous dominance effects d1, and the square of the inbreeding depression h--required to treat finite populations and large populations that have been through a bottleneck or in which there is inbreeding. The effects of dominance can be summarized as functions of the average, D, and the variance, sigma 2 D. An important distinction arises between symmetrical and nonsymmetrical distributions of gene effects. With symmetrical distributions d1 = -d2/2 which is always negative, and the contribution of dominance to sigma 2 a is equal to d2/2. With nonsymmetrical distributions there is an additional contribution H to sigma 2 a and -H/2 to d1, the sign of H being determined by D and the skew of the distribution. Some numerical evaluations are presented for the normal and exponential distributions of gene effects, illustrating the effects of the number of alleles and of the variation in allelic frequencies. Random additive by additive (a*a) epistatic effects contribute to sigma 2 a and to the a*a variance, sigma 2/aa, the relative contributions depending on the number of alleles and the variation in allelic frequencies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Classical quantitative genetic analyses estimate additive and non-additive genetic and environmental components of variance from phenotypes of related individuals without knowing the identities of quantitative trait loci (QTLs). Many studies have found a large proportion of quantitative trait variation can be attributed to the additive genetic variance (VA), providing the basis for claims that non-additive gene actions are unimportant. In this study, we show that arbitrarily defined parameterizations of genetic effects seemingly consistent with non-additive gene actions can also capture the majority of genetic variation. This reveals a logical flaw in using the relative magnitudes of variance components to indicate the relative importance of additive and non-additive gene actions. We discuss the implications and propose that variance component analyses should not be used to infer the genetic architecture of quantitative traits.  相似文献   

5.
The genetic architecture of a quantitative trait refers to the number of genetic variants, allele frequencies, and effect sizes of variants that affect a trait and their mode of gene action. This study was conducted to investigate the effect of four shapes of allelic frequency distributions (constant, uniform, L-shaped and U-shaped) and different number of trait-affecting loci (50, 100, 200, 500) on allelic frequency changes, long term genetic response, and maintaining genetic variance. To this end, a population of 440 individuals composed of 40 males and 400 females as well as a genome of 200 cM consisting of two chromosomes and with a mutation rate of 2.5?×?10?5 per locus was simulated. Selection of superior animals was done using best linear unbiased prediction (BLUP) with assumption of infinitesimal model. Selection intensity was constant over 30 generations of selection. The highest genetic progress obtained when the allelic frequency had L-shaped distribution and number of trait-affecting loci was high (500). Although quantitative genetic theories predict the extinction of genetic variance due to artificial selection in long time, our results showed that under L- and U-shapped allelic frequency distributions, the additive genetic variance is persistent after 30 generations of selection. Further, presence or absence of selection limit can be an indication of low (<50) or high (>100) number of trait-affecting loci, respectively. It was concluded that the genetic architecture of complex traits is an important subject which should be considered in studies concerning long-term response to selection.  相似文献   

6.
Bryant EH  McCommas SA  Combs LM 《Genetics》1986,114(4):1191-1211
Effects of a population bottleneck (founder-flush cycle) upon quantitative genetic variation of morphometric traits were examined in replicated experimental lines of the housefly founded with one, four or 16 pairs of flies. Heritability and additive genetic variances for eight morphometric traits generally increased as a result of the bottleneck, but the pattern of increase among bottleneck sizes differed among traits. Principal axes of the additive genetic correlation matrix for the control line yielded two suites of traits, one associated with general body size and another set largely independent of body size. In the former set containing five of the traits, additive genetic variance was greatest in the bottleneck size of four pairs, whereas in the latter set of two traits the largest additive genetic variance occurred in the smallest bottleneck size of one pair. One trait exhibited changes in additive genetic variance intermediate between these two major responses. These results were inconsistent with models of additive effects of alleles within loci or of additive effects among loci. An observed decline in viability measures and body size in the bottleneck lines also indicated that there was nonadditivity of allelic effects for these traits. Several possible nonadditive models were explored that increased additive genetic variance as a result of a bottleneck. These included a model with complete dominance, a model with overdominance and a model incorporating multiplicative epistasis.  相似文献   

7.
Estimating polygenic effects using markers of the entire genome   总被引:26,自引:0,他引:26  
Xu S 《Genetics》2003,163(2):789-801
Molecular markers have been used to map quantitative trait loci. However, they are rarely used to evaluate effects of chromosome segments of the entire genome. The original interval-mapping approach and various modified versions of it may have limited use in evaluating the genetic effects of the entire genome because they require evaluation of multiple models and model selection. Here we present a Bayesian regression method to simultaneously estimate genetic effects associated with markers of the entire genome. With the Bayesian method, we were able to handle situations in which the number of effects is even larger than the number of observations. The key to the success is that we allow each marker effect to have its own variance parameter, which in turn has its own prior distribution so that the variance can be estimated from the data. Under this hierarchical model, we were able to handle a large number of markers and most of the markers may have negligible effects. As a result, it is possible to evaluate the distribution of the marker effects. Using data from the North American Barley Genome Mapping Project in double-haploid barley, we found that the distribution of gene effects follows closely an L-shaped Gamma distribution, which is in contrast to the bell-shaped Gamma distribution when the gene effects were estimated from interval mapping. In addition, we show that the Bayesian method serves as an alternative or even better QTL mapping method because it produces clearer signals for QTL. Similar results were found from simulated data sets of F(2) and backcross (BC) families.  相似文献   

8.
Summary Prior information on gene effects at individual quantitative trait loci (QTL) and on recombination rates between marker loci and QTL is derived. The prior distribution of QTL gene effects is assumed to be exponential with major effects less likely than minor ones. The prior probability of linkage between a marker and another single locus is a function of the number and length of chromosomes, and of the map function relating recombination rate to genetic distance among loci. The prior probability of linkage between a marker locus and a quantitative trait depends additionally on the number of detectable QTL, which may be determined from total additive genetic variance and minimum detectable QTL effect. The use of this prior information should improve linkage tests and estimates of QTL effects.  相似文献   

9.
C F Baer 《Genetics》1999,152(2):653-659
Variation among loci in the distribution of allele frequencies among subpopulations is well known; how to tell when the variation exceeds that expected when all loci are subject to uniform evolutionary processes is not well known. If locus-specific effects are important, the ability to detect those effects should vary with the level of gene flow. Populations with low gene flow should exhibit greater variation among loci in Fst than populations with high gene flow, because gene flow acts to homogenize allele frequencies among subpopulations. Here I use Lewontin and Krakauer's k statistic to describe the variance among allozyme loci in 102 published data sets from fishes. As originally proposed, k > 2 was considered evidence that the variation in Fst among loci is greater than expected from neutral evolution. Although that interpretation is invalid, large differences in k in different populations suggest that locus-specific forces may be important in shaping genetic diversity. In these data, k is not greater for populations with expected low levels of gene flow than for populations with expected high levels of gene flow. There is thus no evidence that locus-specific forces are of general importance in shaping the distribution of allele frequencies at enzyme loci among populations of fishes.  相似文献   

10.
Although research effort is being expended into determining the importance of epistasis and epistatic variance for complex traits, there is considerable controversy about their importance. Here we undertake an analysis for quantitative traits utilizing a range of multilocus quantitative genetic models and gene frequency distributions, focusing on the potential magnitude of the epistatic variance. All the epistatic terms involving a particular locus appear in its average effect, with the number of two-locus interaction terms increasing in proportion to the square of the number of loci and that of third order as the cube and so on. Hence multilocus epistasis makes substantial contributions to the additive variance and does not, per se, lead to large increases in the nonadditive part of the genotypic variance. Even though this proportion can be high where epistasis is antagonistic to direct effects, it reduces with multiple loci. As the magnitude of the epistatic variance depends critically on the heterozygosity, for models where frequencies are widely dispersed, such as for selectively neutral mutations, contributions of epistatic variance are always small. Epistasis may be important in understanding the genetic architecture, for example, of function or human disease, but that does not imply that loci exhibiting it will contribute much genetic variance. Overall we conclude that theoretical predictions and experimental observations of low amounts of epistatic variance in outbred populations are concordant. It is not a likely source of missing heritability, for example, or major influence on predictions of rates of evolution.  相似文献   

11.
T. Hayashi  Y. Ukai 《Genetics》1994,136(2):693-704
In this study we show how the genetic variance of a quantitative trait changes in a self-fertilizing population under repeated cycles of truncation selection, with the analysis based on the infinitesimal model in which it is assumed that the trait is determined by an infinite number of unlinked loci without epistasis. The genetic variance is reduced not as a consequence of the genotypic frequency change but due to the build-up of linkage disequilibrium under truncation selection in this model. We assume that the order of the genotypic contribution from each locus is n(-1/2), where n is the number of loci involved, and investigate the change in linkage disequilibrium resulting from selection and self-fertilization using genotypic frequency dynamics in order to analyze the change in the genetic variance. Our analysis gives recurrence relations of genetic variance among the succeeding generations for the three cases of gene action, i.e., purely additive action, pure dominance without additive effect and the presence of both additive effect and dominance, respectively. Numerical examples are also given as a check on the recurrence formulas.  相似文献   

12.
A. Ruiz  A. Barbadilla 《Genetics》1995,139(1):445-455
Using Cockerham's approach of orthogonal scales, we develop genetic models for the effect of an arbitrary number of multiallelic quantitative trait loci (QTLs) or neutral marker loci (NMLs) upon any number of quantitative traits. These models allow the unbiased estimation of the contributions of a set of marker loci to the additive and dominance variances and covariances among traits in a random mating population. The method has been applied to an analysis of allozyme and quantitative data from the European oyster. The contribution of a set of marker loci may either be real, when the markers are actually QTLs, or apparent, when they are NMLs that are in linkage disequilibrium with hidden QTLs. Our results show that the additive and dominance variances contributed by a set of NMLs are always minimum estimates of the corresponding variances contributed by the associated QTLs. In contrast, the apparent contribution of the NMLs to the additive and dominance covariances between two traits may be larger than, equal to or lower than the actual contributions of the QTLs. We also derive an expression for the expected variance explained by the correlation between a quantitative trait and multilocus heterozygosity. This correlation explains only a part of the genetic variance contributed by the markers, i.e., in general, a combination of additive and dominance variances and, thus, provides only very limited information relative to the method supplied here.  相似文献   

13.
Interactions among genes and the environment are a common source of phenotypic variation. To characterize the interplay between genetics and the environment at single nucleotide resolution, we quantified the genetic and environmental interactions of four quantitative trait nucleotides (QTN) that govern yeast sporulation efficiency. We first constructed a panel of strains that together carry all 32 possible combinations of the 4 QTN genotypes in 2 distinct genetic backgrounds. We then measured the sporulation efficiencies of these 32 strains across 8 controlled environments. This dataset shows that variation in sporulation efficiency is shaped largely by genetic and environmental interactions. We find clear examples of QTN:environment, QTN: background, and environment:background interactions. However, we find no QTN:QTN interactions that occur consistently across the entire dataset. Instead, interactions between QTN only occur under specific combinations of environment and genetic background. Thus, what might appear to be a QTN:QTN interaction in one background and environment becomes a more complex QTN:QTN:environment:background interaction when we consider the entire dataset as a whole. As a result, the phenotypic impact of a set of QTN alleles cannot be predicted from genotype alone. Our results instead demonstrate that the effects of QTN and their interactions are inextricably linked both to genetic background and to environmental variation.  相似文献   

14.
Summary Use of chromosomal markers can accelerate genetic progress for quantitative traits in pedigree selection programs by providing early information on Mendelian segregation effects for individual progeny. Potential effectiveness of selection using markers is determined by the amount of additive genetic variance traced from parents to progeny by the markers. Theoretical equations for the amount of additive genetic variance associated with a marker were derived at the individual level and for a segregating population in joint linkage equilibrium. Factors considered were the number of quantitative trait loci linked to the marker, their individual effects, and recombination rates with the marker. Subsequently, the expected amount of genetic variance associated with a marker in a segregating population was derived. In pedigree selection programs in segregating populations, a considerable fraction of the genetic variance on a chromosome is expected to be associated with a marker located on that chromosome. For an average chromosome in the bovine, this fraction is approximately 40% of the Mendelian segregation variance contributed by the chromosome. The effects of interference and position of the marker on this expectation are relative small. Length of the chromosome has a large effect on the expected variance. Effectiveness of MAS is, however, greatly reduced by lack of polymorphism at the marker and inaccuracy of estimation of chromosome substitution effects. The size of the expected amount of genetic variance associated with a chromosomal marker indicates that, even when the marker is not the active locus, large chromosome substitution effects are not uncommon in segregating populations.  相似文献   

15.
Height has been used for more than a century as a model by which to understand quantitative genetic variation in humans. We report that the entire genome appears to contribute to its additive genetic variance. We used genotypes and phenotypes of 11,214 sibling pairs from three countries to partition additive genetic variance across the genome. Using genome scans to estimate the proportion of the genomes of each chromosome from siblings that were identical by descent, we estimated the heritability of height contributed by each of the 22 autosomes and the X chromosome. We show that additive genetic variance is spread across multiple chromosomes and that at least six chromosomes (i.e., 3, 4, 8, 15, 17, and 18) are responsible for the observed variation. Indeed, the data are not inconsistent with a uniform spread of trait loci throughout the genome. Our estimate of the variance explained by a chromosome is correlated with the number of times suggestive or significant linkage with height has been reported for that chromosome. Variance due to dominance was not significant but was difficult to assess because of the high sampling correlation between additive and dominance components. Results were consistent with the absence of any large between-chromosome epistatic effects. Notwithstanding the proposed architecture of complex traits that involves widespread gene-gene and gene-environment interactions, our results suggest that variation in height in humans can be explained by many loci distributed over all autosomes, with an additive mode of gene action.  相似文献   

16.
K. A. Hughes 《Genetics》1997,145(1):139-151
To assess the genetic basis of sperm competition under conditions in which it occurs, I estimated additive, dominance, homozygous and environmental variance components, the effects of inbreeding, and the weighted average dominance of segregating alleles for two measures of sperm precedence in a large, outbred laboratory population. Both first and second male precedence show significant decline on inbreeding. Second male precedence demonstrates significant dominance variance and homozygous genetic variance, but the additive variance is low and not significantly different from zero. For first male precedence, the variance among homozygous lines is again significant, and dominance variance is larger than the additive variance, but is not statistically significant. In contrast, male mating success and other fitness components in Drosophila generally exhibit significant additive variance and little or no dominance variance. Other recent experiments have shown significant genotypic variation for sperm precedence and have associated it with allelic variants of accessory-gland proteins. The contrast between sperm precedence and other male fitness traits in the structure of quantitative genetic variation suggests that different mechanisms may be responsible for the maintenance of variation in these traits. The pattern of genetic variation and inbreeding decline shown in this experiment suggests that one or a few genes with major effects on sperm precedence may be segregating in this population.  相似文献   

17.
Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population.  相似文献   

18.
The introgression of genes carried by a small group of immigrants is studied. The recipient and the donor populations differ at several autosomal loci subject to weak selection, and two allelic forms of each gene are considered. Fitness variation is determined by additive allelic effects, by dominance effects, and by two-locus additive-by-additive epistatic interaction of the effects of the alleles. The fate of the group of immigrants is quantified by the selection barrier that describes the cumulative mean fitness of the hybrids and hybrid descendants relative to the fitness of the resident population. The monomorphic and the polymorphic loci of the recipient population contribute differently to the selection barrier. If the genetic difference between recipient and donor population is small, then the contribution of the monomorphic loci is dominated by a positive term dependent on the difference in gene frequencies. The contribution of the polymorphic loci depends only on the difference of the leading order in the pairwise linkage disequilibria between the two populations. This contribution may be positive or negative; and, thus, polymorphic loci may either contribute to the barrier or inflate the introgression.  相似文献   

19.
Genetic benefits can enhance the fitness of polyandrous females through the high intrinsic genetic quality of females' mates or through the interaction between female and male genes. I used a full diallel cross, a quantitative genetics design that involves all possible crosses among a set of genetically homogeneous lines, to determine the mechanism through which polyandrous female decorated crickets (Gryllodes sigillatus) obtain genetic benefits. I measured several traits related to fitness and partitioned the phenotypic variance into components representing the contribution of additive genetic variance ('good genes'), nonadditive genetic variance (genetic compatibility), as well as maternal and paternal effects. The results reveal a significant variance attributable to both nonadditive and additive sources in the measured traits, and their influence depended on which trait was considered. The lack of congruence in sources of phenotypic variance among these fitness-related traits suggests that the evolution and maintenance of polyandry are unlikely to have resulted from one selective influence, but rather are the result of the collective effects of a number of factors.  相似文献   

20.
The relative proportion of additive and non-additive variation for complex traits is important in evolutionary biology, medicine, and agriculture. We address a long-standing controversy and paradox about the contribution of non-additive genetic variation, namely that knowledge about biological pathways and gene networks imply that epistasis is important. Yet empirical data across a range of traits and species imply that most genetic variance is additive. We evaluate the evidence from empirical studies of genetic variance components and find that additive variance typically accounts for over half, and often close to 100%, of the total genetic variance. We present new theoretical results, based upon the distribution of allele frequencies under neutral and other population genetic models, that show why this is the case even if there are non-additive effects at the level of gene action. We conclude that interactions at the level of genes are not likely to generate much interaction at the level of variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号