首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Our hypothesis states that variceal pressure and wall tension increase dramatically during esophageal peristaltic contractions. This increase in pressure and wall tension is a natural consequence of the anatomy and physiology of the esophagus and of the esophageal venous plexus. The purpose of this study was to evaluate variceal hemodynamics during peristaltic contraction. A simultaneous ultrasound probe and manometry catheter was placed in the distal esophagus in nine patients with esophageal varices. Simultaneous esophageal luminal pressure and ultrasound images of varices were recorded during peristaltic contraction. Maximum variceal cross-sectional area and esophageal luminal pressures at which the varix flattened, closed, and opened were measured. The esophageal lumen pressure equals the intravariceal pressure at variceal flattening due to force balance laws. The mean flattening pressures (40.11 +/- 16.77 mmHg) were significantly higher than the mean opening pressures (11.56 +/- 25.56 mmHg) (P < or = 0.0001). Flattening pressures >80 mmHg were generated during peristaltic contractions in 15.5% of the swallows. Variceal cross-sectional area increased a mean of 41% above baseline (range 7-89%, P < 0.0001) during swallowing. The peak closing pressures in patients that experience future variceal bleeding were significantly higher than the peak closing pressures in patients that did not experience variceal bleeding (P < 0.04). Patients with a mean peak closing pressure >61 mmHg were more likely to bleed. In this study, accuracy of predicting future variceal bleeding, based on these criteria, was 100%. Variceal models were developed, and it was demonstrated that during peristaltic contraction there was a significant increase in intravariceal pressure over baseline intravariceal pressure and that the peak intravariceal pressures were directly proportional to the resistance at the gastroesophageal junction. In conclusion, esophageal peristalsis in combination with high resistance to blood flow through the gastroesophageal junction leads to distension of the esophageal varices and an increase in intravariceal pressure and wall tension.  相似文献   

2.
The objectives of this study were to validate a novel ultrasound technique and to use it to study the circumferential stress-strain properties of the human esophagus in vivo. A manometric catheter equipped with a high-compliance bag and a high-frequency intraluminal ultrasonography probe was used to record esophageal pressure and images. Validation studies were performed in vitro followed by in vivo studies in healthy human subjects. Esophageal distensions were performed with either an isovolumic (5-20 ml of water) or with an isobaric (10-60 mmHg) technique. Sustained distension was also performed for 3 min in each subject. The circumferential wall stress and strain were calculated. In vitro studies indicate that the ultrasound technique can make measurements of the esophageal wall with an accuracy of 0.01 mm. The in vivo studies provide the necessary data to compute the Kirchhoff's stress, Green's strain, and Young's elastic modulus during esophageal distensions. The stress-strain relationship revealed a linear shape, the slope of which corresponds to the Young's modulus. During sustained distensions, we found dynamic changes of stress and strain during the period of distension. We describe and validate a novel ultrasound technique that allows measurement of biomechanical properties of the esophagus in vivo in humans.  相似文献   

3.
Lung volume dependence of esophageal pressure in the neck   总被引:1,自引:0,他引:1  
There is conflicting evidence in the literature regarding tissue pressure in the neck. We studied esophageal pressure along cervical and intrathoracic esophageal segments in six healthy men to determine extramural pressure for the cervical and intrathoracic airways. A balloon catheter system with a 1.5-cm-long balloon was used to measure intraesophageal pressures. It was positioned at 2-cm intervals, starting 10 cm above the cardiac sphincter and ending at the cricopharyngeal sphincter. We found that esophageal pressures became more negative as the balloon catheter moved from intrathoracic to cervical segments, until the level of the cricopharyngeal sphincter was reached. At total lung capacity, esophageal pressures were -10.5 +/- 2.9 (SE) cmH2O in the lower esophagus, -18.9 +/- 3.0 just within the thorax, and -21.3 +/- 2.73 within 2 cm of the cricopharyngeal sphincter. The variation in mouth minus esophageal pressure with lung volume was similar in cervical and thoracic segments. We conclude that the subatmospheric tissue pressure applied to the posterior membrane of the cervical trachea results in part from transmission of apical pleural pressure into the neck. Transmural pressure for cervical and thoracic tracheal segments is therefore similar.  相似文献   

4.
The venous occlusion technique was used to measure capillary pressure in the forearm and foot of man over a wide range of venous pressures. In six recumbent subjects venous pressure (Pv) in the forearm (mean +/- SE) was 9.3 +/- 1.4 mmHg and the venous occlusion estimate of capillary pressure (Pc) was 17.0 +/- 1.6 mmHg, whereas in another six subjects Pv in the foot was 17.1 +/- 1.2 mmHg and Pc was 23.4 +/- 2.5 mmHg. Venous pressure in the limbs was increased either by changes in posture or by venous congestion with a sphygmomanometer cuff. On standing Pv in the foot increased to 95.2 +/- 1.5 mmHg and Pc rose to 112.8 +/- 3.1 mmHg. The relationship established between venous pressure and capillary pressure in the forearm is Pc = 1.16 Pv + 8.1, whereas in the foot the relationship is Pc = 1.2 Pv + 1.6. The magnitude and duration of the changes in capillary pressure were also recorded during reactive hyperemia. The venous occlusion method of measuring capillary pressure is simple and easily applied to studies in humans.  相似文献   

5.
Venous occlusion capillary pressures (Pcv) were simultaneously compared with isogravimetric capillary pressures (PcI) in the same isolated perfused dog lung preparations. For 26 determinations, PcI averaged 1.23 +/- 0.22 (SE) mmHg higher than Pcv. However, the two measurements of capillary pressure were highly correlated (r = 0.99), and the following regression equation was obtained: Pcv = 1.12 PcI - 2.1. Pcv could be easily measured several times in the same preparation, either by total venous occlusion or regional venous occlusion using a Swan-Ganz balloon catheter. In addition, Pcv did not require an isogravimetric state for its determination. These data suggest that the major sites of filtration and vascular capacitance in the pulmonary circulation reside in the microvessels and that the more easily determined Pcv is an adequate measure of the average capillary filtration pressure in the lungs.  相似文献   

6.
This investigation was undertaken to study the effect of hydrostatic pressure on gastroesophageal dynamics during immersion in thermoneutral water to the neck. In 5 healthy male subjects (normal end-expiratory), gastric pressure (PG), esophageal pressure (PE), location and pressure of distal esophageal sphincter (des), location of respiratory inversion point (RIP), and gastroesophageal pH gradient were measured standing in air (A), standing in water to the neck (B), and standing in air with abdominal compression (C). The pressure was measured with a Honeywell esophageal catheter (model 31) with built-in pressure transducer. A Beckman stomach pH electrode (no. 39042) was positioned adjacent to the pressure transducer. PG increased from 4.6 +/- 0.6 (SE) mmHg in A to nearly 20 mmHg in B and C, while PE increased from -6.0 +/- 0.8 mmHg in A to -0.8 +/- 1.0 and -3.4 +/- 0.9 mmHg in B and C, respectively. However, PDES was always 11-15 mmHg higher than PG. The superior limit of DES was displaced cephalad by indicating a stretching of DES and a shortening of the esophagus. Qualitatively similar findings were obtained in C. In all experiments, the esophageal pH remained above 6, and no alteration in the amplitude of primary peristaltic waves was seen. It is concluded that a head-out immersion with increased gastroesophageal pressure gradient predisposes to gastric reflux in the absence of a competent DES mechanism.  相似文献   

7.
Utilizing new materials and miniaturization techniques, an ultraminiature catheter pressure transducer for catheterization of the pulmonary artery (PA) has been developed and applied in intact, spontaneously breathing, anesthetized rats. The catheter arrangement consists of three components: 1) an SPR-671 ultraminiature pressure transducer (measuring catheter), 2) a plastic introducer (sheath) that is slipped over the measuring catheter, and 3) an external wire mounted on the outside of the introducer for bending its tip. The measuring catheter is first inserted through the right jugular vein into the right ventricle. The introducer is then slipped over it. The tip of the introducer is bent so that there is an angle of approximately 90 degrees or less to the shaft. The measuring catheter is advanced across the pulmonary valve into the PA. Measurements of pulmonary arterial pressure were made in five male Long Evans (364 +/- 7 g body wt) and five female Sprague-Dawley (244 +/- 7 g body wt) rats under control conditions. The effects of infusion of norepinephrine (0.1 mg.kg(-1).h(-1) iv for 20-min duration) were tested in Long Evans rats. Pulmonary arterial systolic pressure measurements were 34.0 +/- 0.8 and 29.5 +/- 0.4 mmHg, and diastolic pressure values were 23.6 +/- 0.8 and 18.1 +/- 0.6 mmHg in male Long Evans and female Sprague-Dawley rats, respectively. Norepinephrine induced an increase in pulmonary arterial systolic (40.8 +/- 0.1 mmHg) and diastolic (28.6 +/- 0.4 mmHg) pressures and an elevation in pulmonary vascular resistance from a control value of 0.093 +/- 0.003 to 0.103 +/- 0.004 mmHg.kg.min.ml(-1).  相似文献   

8.
The equilibrium pressure obtained during simultaneous occlusion of hepatic vascular inflow and outflow was taken as the reference estimate of hepatic vascular distending pressure (P(hd)). P(hd) at baseline was 1.1 +/- 0.2 (mean +/- SE) mmHg higher than hepatic vein pressure (P(hv)) and 0.7 +/- 0.3 mmHg lower than portal vein pressure (P(pv)). Norepinephrine (NE) infusion increased P(hd) by 1. 5 +/- 0.5 mmHg and P(pv) by 3.7 +/- 0.6 mmHg but did not significantly increase P(hv). Hepatic lobar vein pressure (P(hlv)) measured by a micromanometer tipped 2-Fr catheter closely resembled P(hd) both at baseline and during NE-infusion. Dynamic pressure-volume (PV) curves were constructed from continuous measurements of P(hv) and hepatic blood volume increases (estimated by sonomicrometry) during brief occlusions of hepatic vascular outflow and compared with static PV curves constructed from P(hd) determinations at five different hepatic volumes. Estimates of hepatic vascular compliance and changes in unstressed blood volume from the two methods were in close agreement with hepatic compliance averaging 32 +/- 2 ml. mmHg(-1). kg liver(-1). NE infusion reduced unstressed blood volume by 110 +/- 38 ml/kg liver but did not alter compliance. In conclusion, P(hlv) reflects hepatic distending pressure, and the construction of dynamic PV curves is a fast and valid method for assessing hepatic compliance and changes in unstressed blood volume.  相似文献   

9.
Auscultatory indirect measurement of blood pressure in dogs   总被引:1,自引:0,他引:1  
An indirect method of measuring blood pressure (cuff plus stethoscope) was evaluated in 70 dogs weighing 15 to 30 kg (17.5 +/- 8.8 kg; mean +/- standard deviation). A cuff 12 cm wide was used. The measurements were most audible with the cuff on the upper foreleg of the dog and with the stethoscope placed in the medial epicondylar region just distal to the cuff. The cuff was inflated to greater than systolic pressure and allowed to deflate slowly. In 70 lightly sedated dogs, systolic blood pressures averaged 145 +/- 25 mmHg (mean +/- standard deviation) and diastolic blood pressures averaged 84 +/- 14 mmHg. Indirect measurements were compared to direct measurements (femoral arterial catheter). Systolic pressures obtained by this direct method averaged 138 +/- 29 mmHg (mean +/- standard deviation) and diastolic pressures averaged 84 +/- 17 mmHg. The correlation coefficient for systolic pressure was 0.96 and for diastolic pressure 0.97.  相似文献   

10.
Right heart catheterization is often required to monitor intra-cardiac pressures in a number of disease states. Ultrasound contrast agents can produce pressure modulated subharmonic emissions that may be used to estimate right ventricular (RV) pressures. A technique based on subharmonic acoustic emissions from ultrasound contrast agents to track RV pressures noninvasively has been developed and its clinical potential evaluated. The subharmonic signals were obtained from the aorta, RV, and right atrium (RA) of five anesthetized closed-chest mongrel dogs using a SonixRP ultrasound scanner and PA4-2 phased array. Simultaneous pressure measurements were obtained using a 5-French solid state micromanometer tipped catheter. Initially, aortic subharmonic signals and systemic blood pressures were used to obtain a calibration factor in units of millimeters of mercury per decibel. This factor was combined with RA pressures (that can be obtained noninvasively) and the acoustic data from the RV to obtain RV pressure values. The individual calibration factors ranged from -2.0 to -4.0 mmHg/dB. The subharmonic signals tracked transient changes in the RV pressures within an error of 0.6 mmHg. Relative to the catheter pressures, the mean errors in estimating RV peak systolic and minimum diastolic pressures, and RV relaxation [isovolumic negative derivative of change in pressure over time (-dP/dt)] by use of the subharmonic signals, were -2.3 mmHg, -0.8 mmHg, and 2.9 mmHg/s, respectively. Overall, acoustic estimates of RV peak systolic and minimum diastolic pressures and RV relaxation were within 3.4 mmHg, 1.8 mmHg, and 5.9 mmHg/s, respectively, of the measured pressures. This pilot study demonstrates that subharmonic emissions from ultrasound contrast agents have the potential to noninvasively track in vivo RV pressures with errors below 3.5 mmHg.  相似文献   

11.
Stenosis of either the portal or splenic vein increases splenic afferent nerve activity (SANA), which, through the splenorenal reflex, reduces renal blood flow. Because these maneuvers not only raise splenic venous pressure but also reduce splenic venous outflow, the question remained as to whether it is increased intrasplenic postcapillary pressure and/or reduced intrasplenic blood flow, which stimulates SANA. In anesthetized rats, we measured the changes in SANA in response to partial occlusion of either the splenic artery or vein. Splenic venous and arterial pressures and flows were simultaneously monitored. Splenic vein occlusion increased splenic venous pressure (9.5 +/- 0.5 to 22.9 +/- 0.8 mmHg, n = 6), reduced splenic arterial blood flow (1.7 +/- 0.1 to 0.9 +/- 0.1 ml/min, n = 6) and splenic venous blood flow (1.3 +/- 0.1 to 0.6 +/- 0.1 ml/min, n = 6), and increased SANA (1.7 +/- 0.4 to 2.2 +/- 0.5 spikes/s, n = 6). During splenic artery occlusion, we matched the reduction in either splenic arterial blood flow (1.7 +/- 0.1 to 0.7 +/- 0.05, n = 6) or splenic venous blood flow (1.2 +/- 0.1 to 0.5 +/- 0.04, n = 5) with that seen during splenic vein occlusion. In neither case was there any change in either splenic venous pressure (-0.4 +/- 0.9 mmHg, n = 6 and +0.1 +/- 0.3 mmHg, n = 5) or SANA (-0.11 +/- 0.15 spikes/s, n = 6 and -0.05 +/- 0.08 spikes/s, n = 5), respectively. Furthermore, there was a linear relationship between SANA and splenic venous pressure (r = 0.619, P = 0.008, n = 17). There was no such relationship with splenic venous (r = 0.371, P = 0.236, n = 12) or arterial (r = 0.275, P = 0.413, n = 11) blood flow. We conclude that it is splenic venous pressure, not flow, which stimulates splenic afferent nerve activity and activates the splenorenal reflex in portal and splenic venous hypertension.  相似文献   

12.
Central aortic pressure gives better insight into ventriculo-arterial coupling and better prognosis of cardiovascular complications than peripheral pressures. Therefore transfer functions (TF), reconstructing aortic pressure from peripheral pressures, are of great interest. Generalized TFs (GTF) give useful results, especially in larger study populations, but detailed information on aortic pressure might be improved by individualization of the TF. We found earlier that the time delay, representing the travel time of the pressure wave between measurement site and aorta is the main determinant of the TF. Therefore, we hypothesized that the TF might be individualized (ITF) using this time delay. In a group of 50 patients at rest, aged 28-66 yr (43 men), undergoing diagnostic angiography, ascending aortic pressure was 119 +/- 20/70 +/- 9 mmHg (systolic/diastolic). Brachial pressure, almost simultaneously measured using catheter pullback, was 131 +/- 18/67 +/- 9 mmHg. We obtained brachial-to-aorta ITFs using time delays optimized for the individual and a GTF using averaged delay. With the use of ITFs, reconstructed aortic pressure was 121 +/- 19/69 +/- 9 mmHg and the root mean square error (RMSE), as measure of difference in wave shape, was 4.1 +/- 2.0 mmHg. With the use of the GTF, reconstructed pressure was 122 +/- 19/69 +/- 9 mmHg and RMSE 4.4 +/- 2.0 mmHg. The augmentation index (AI) of the measured aortic pressure was 26 +/- 13%, and with ITF and GTF the AIs were 28 +/- 12% and 30 +/- 11%, respectively. Details of the wave shape were reproduced slightly better with ITF but not significantly, thus individualization of pressure transfer is not effective in resting patients.  相似文献   

13.
To examine the existence of pressure equilibrium between tributary veins and the central vena cava during the mean circulatory filling pressure manoeuvre, pressures in the hepatic portal vein, renal vein, and inferior vena cava were determined at 4-s intervals over a 20-s period of circulatory arrest induced by inflating a right atrial balloon in normal blood volume, 10% volume depletion, and 10% volume expansion states in urethane-anaesthetized rats. Portal vein pressure determined 8 s after arrest during volume depletion and expansion was significantly higher than vena caval pressure (6.2 +/- 0.8 vs. 3.4 +/- 0.2 and 7.7 +/- 0.5 vs. 6.2 +/- 0.4 mmHg (1 mmHg = 133.32 Pa), respectively; p less than 0.01); this pressure disequilibrium continued for 16 s during volume expansion and for the entire 20 s during volume depletion. Renal vein pressure was equal to vena caval pressure during this manoeuvre. Portal vein pressure at normal blood volume was not significantly different from vena caval pressure following circulatory arrest (4.6 +/- 0.3 vs. 3.8 +/- 0.4 mmHg, respectively). Following ganglionic blockade, portal vein pressure was still significantly higher than vena caval pressure for 12 s during volume alterations. At the 8th s of the arrest the portal pressure determined in volume depletion was 3.6 +/- 0.3 mmHg and the inferior vena caval pressure was 2.6 +/- 0.4 mmHg (p less than 0.05). Under the volume expansion condition, the respective values were 6.5 +/- 0.3 and 5.3 +/- 0.4 mmHg (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The precise measurement of esophageal pressure (Pes) as a reflection of pleural pressure (Ppl) is crucial to the measurement of lung mechanics in the newborn. The fidelity of Pes as a measurement of Ppl is determined by the occlusion test in which, during respiratory efforts against an occlusion at the airway opening, changes in pressure (delta Pao) (Pao is assumed to be equal to alveolar pressure) are shown to be equal to changes in Pes (delta Pes). Eight intubated premature infants (640-3,700 g) with chest wall distortion were studied using a water-filled catheter system to measure Pes. During the occlusion test, all patients had a finite region of the esophagus where delta Pes equaled delta Pao, which corresponded to points in the esophagus above the cardia but below the carina. In conclusion, even in the presence of chest wall distortion, a liquid-filled catheter with the tip between the cardia and carina can provide an accurate measurement of Ppl, even in the very small premature infant with chest wall distortion.  相似文献   

15.
Our aim was to define normal esophagogastric junction (EGJ) morphology and relaxation characteristics using high-resolution manometry (HRM). To this end, 75 asymptomatic controls underwent HRM with a solid-state manometric assembly incorporating 36 circumferential sensors spaced at 1-cm intervals positioned to record from the hypopharynx to the stomach. Ten 5-ml water swallows were obtained. EGJ relaxation was quantified by 1) nadir pressure, 2) the lowest 3-s mean residual pressure after swallow (E-sleeve), and 3) the transsphincteric gradient 2-6 s after swallowing measured from 2 cm above to 2 cm below the EGJ. A new parameter, integrated relaxation resistance (IRR), was also calculated. The IRR calculation accounted for both the duration of EGJ relaxation and instantaneous E-sleeve-type relaxation pressures during the entire interval of relaxation. The means and ranges (5-95th percentile) for nadir lower esophageal sphincter relaxation pressure (mean: 3.9 mmHg, range: 0-10.1 mmHg) and E-sleeve relaxation pressure (mean: 8.1 mmHg, range: 4.1-15.1 mmHg) were consistent with previously reported values. The mean relaxation interval was 7.95 +/- 0.2 s (mean +/- SE), whereas the median relaxation pressure during that interval was 10.7 +/- 0.5 mmHg (mean +/- SE). Mean IRR was 1.3 mmHg/s (95th percentile: 3.0 mmHg/s). Mean EGJ length was 3.7 cm. In conclusion, HRM provides a seamless dynamic representation of pressure within and across the EGJ. In addition to providing conventional EGJ relaxation parameters, this technology also creates opportunities to quantify more precise measures of EGJ relaxation and morphology.  相似文献   

16.
Utilizing the arterial and venous occlusion technique, the effects of lung inflation and deflation on the resistance of alveolar and extraalveolar vessels were measured in the dog in an isolated left lower lobe preparation. The lobe was inflated and deflated slowly (45 s) at constant speed. Two volumes at equal alveolar pressure (Palv = 9.9 +/- 0.6 mmHg) and two pressures (13.8 +/- 0.8 mmHg, inflation; 4.8 +/- 0.5 mmHg, deflation) at equal volumes during inflation and deflation were studied. The total vascular pressure drop was divided into three segments: arterial (delta Pa), middle (delta Pm), and venous (delta Pv). During inflation and deflation the changes in pulmonary arterial pressure were primarily due to changes in the resistance of the alveolar vessels. At equal Palv (9.9 mmHg), delta Pm was 10.3 +/- 1.2 mmHg during deflation compared with 6.8 +/- 1.1 mmHg during inflation. At equal lung volume, delta Pm was 10.2 +/- 1.5 mmHg during inflation (Palv = 13.8 mmHg) and 5.0 +/- 0.7 mmHg during deflation (Palv = 4.8 mmHg). These measurements suggest that the alveolar pressure was transmitted more effectively to the alveolar vessels during deflation due to a lower alveolar surface tension. It was estimated that at midlung volume, the perimicrovascular pressure was 3.5-3.8 mmHg greater during deflation than during inflation.  相似文献   

17.
Occlusion pressures vs. micropipette pressures in the pulmonary circulation   总被引:2,自引:0,他引:2  
Because of the discrepancies between the arterial and venous occlusion technique and the micropuncture technique in estimating pulmonary capillary pressure gradient, we compared measurements made with the two techniques in the same preparations (isolated left lower lobe of dog lung). In addition, we also obtained direct and reliable measurements of pressures in 0.9-mm arteries and veins using a retrograde catheterization technique, as well as a microvascular pressure made with the double-occlusion technique. The following conclusions were made from dog lobes perfused with autologous blood at normal flow rate of 500-600 ml/min and pressure gradient of 12 mmHg. 1) The double-occlusion technique measures pressure in the capillaries, 2) a small pressure gradient (0.5 mmHg) exists between 30- to 50-micron arteries and veins, 3) a large pressure gradient occurs in arteries and veins greater than 0.9 mm, 4) the arterial and venous occlusion techniques measure pressures in vessels that are less than 900 microns diam but greater than 50 microns, very likely close to 100 microns, 5) serotonin constricts arteries (larger and smaller than 0.9 mm) whereas histamine constricts veins (larger and smaller than 0.9 mm). Thus three different techniques (small retrograde catheter, arterial and venous occlusion, and micropuncture) show consistent results, confirming the presence of significant resistance in large arteries and veins with minimal resistance in the microcirculation.  相似文献   

18.
Intrahepatic pressure (9.4 +/- 0.3 mmHg; 1 mmHg = 133.32 Pa), measured proximal to a hepatic venous resistance site, was insignificantly different from portal venous pressure (9.6 +/- 0.4 mmHg). This lobar venous pressure is not wedged hepatic venous pressure as it is measured from side holes in a catheter with a sealed tip. Validation of the lobar venous pressure measurement was done in a variety of ways and using different sizes and configurations of catheters. The site of hepatic venous resistance in the dog is localized to a narrow sphincterlike region about 0.5 cm in length and within 1-2 cm (usually within 1 cm) of the junction of the vena cava and hepatic veins. Sinusoidal and portal venous resistance appears insignificant in the basal state and large increases in liver blood volume (histamine infusion or passive vena caval occlusion) or large decreases in liver blood volume (passive vascular occlusion) do not alter the insignificant pressure gradient between portal and lobar venous pressures. Norepinephrine infusion (1.25 microgram X kg-1 X min-1 intraportal) and hepatic sympathetic nerve stimulation (10 Hz) led to a significantly greater rise in portal venous pressure than in lobar venous pressure, indicating some presinusoidal (and (or) sinusoidal) constriction and this indicates that lobar venous pressure cannot be assumed under all conditions to accurately reflect portal pressure. However, most of the rise in portal venous pressure induced by intraportal infusion of norepinephrine or nerve stimulation and virtually all of the pressure rise induced by histamine could be attributed to the postsinusoidal resistance site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Pressure in the compliant middle segment of the pulmonary vascular bed (PM), as determined by arterial occlusion, was compared with pressure at the filtration site (effective filtration pressure, EFP), determined by the isofiltration technique, at very high (7-10 times normal) pulmonary flow in six in situ perfused canine left upper lobes. At these flow rates inflow and left atrial pressures averaged 41.9 +/- 1.3 and 2.5 +/- 0.5 (SE) mmHg, respectively. PM was 30.9 +/- 1.6 mmHg, and EFP was 32.3 +/- 1.9 mmHg with no significant difference between the two measurements by paired t test. The results indicate that the arterial occlusion technique yields a pressure that is equivalent to EFP even during very high pulmonary blood flow where the longitudinal distribution of resistance is quite different from that obtained during normal flow.  相似文献   

20.
The measurement of peripheral blood flow by plethysmography assumes that the cuff pressure required for venous occlusion does not decrease arterial inflow. However, studies in five normal subjects suggested that calf blood flow measured with a plethysmograph was less than arterial inflow calculated from Doppler velocity measurements. We hypothesized that the pressure required for venous occlusion may have decreased arterial velocity. Further studies revealed that systolic diameter of the superficial femoral artery under a thigh cuff decreased from 7.7 +/- 0.4 to 5.6 +/- 0.7 mm (P less than 0.05) when the inflation pressure was increased from 0 to 40 mmHg. Cuff inflation to 40 mmHg also reduced mean velocity 38% in the common femoral artery and 47% in the popliteal artery. Inflation of a cuff on the arm reduced mean velocity in the radial artery 22% at 20 mmHg, 26% at 40 mmHg, and 33% at 60 mmHg. We conclude that inflation of a cuff on an extremity to low pressures for venous occlusion also caused a reduction in arterial diameter and flow velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号