首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular signaling proteins are very often regulated by site-specific phosphorylation. For example, growth factor receptors in eukaryotic cells contain intrinsic tyrosine kinase activity and use inter- and intra-molecular interactions to recruit and orient potential protein substrates for phosphorylation. Equally important in determining the magnitude and kinetics of such a response is protein dephosphorylation, catalysed by phosphatase enzymes. A growing body of evidence indicates that certain protein tyrosine phosphatases (PTPs), like tyrosine kinases, are affected by intermolecular interactions that alter the specific activity or localization of their catalytic domains. Using a detailed kinetic modeling framework, we theoretically explore the regulation of PTPs through their association with receptor tyrosine kinases, as noted for the Src homology 2-domain-containing PTPs, SHP-1 and -2. Receptor-PTP binding, in turn, is expected to influence the phosphorylation pattern of those receptors and proteins they associate with, and we show how PTPs might serve to co- or counter-regulate parallel pathways in a signaling network.  相似文献   

2.
Given the importance of tyrosine phosphorylation of proteins in signalling pathways, it is perhaps not surprising that protein tyrosine phosphatases (PTPs) are involved in the pathogenesis of certain human diseases. A PTP produced by the Yersinia bacteria (which can cause bubonic plague, septicemia and enteric diseases) is thought to be used as a ‘weapon’ against host cell functions. In addition, dysfunction of cells' endogenous PTPs may contribute to defective immune function, to cancer and to diabetes.  相似文献   

3.
The reversible phosphorylation of proteins on tyrosine residues is fundamental to a variety of intracellular signaling pathways and is controlled by the actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). While much progress has been made in understanding the regulation of PTKs, there is still relatively little known concerning the regulation of PTPs. Using immune complex phosphatase assays, we demonstrated that the enzymatic activity of the nonreceptor type PTP, PTP1B, is regulated by cell adhesion. Placing primary human foreskin fibroblasts (HFFs) in suspension leads to a distinct increase in PTP1B activity, whereas the readhesion of suspended HFFs onto fibronectin or collagen I inhibited activity. To gain insight into the mechanisms involved, we analyzed recombinant forms of PTP1B mutated at potential regulatory sites. Our results indicated that tyrosine residue 66 is essential for maintaining activity at 37 degrees C. We also found that the C-terminal region of PTP1B and localization to the endoplasmic reticulum are not required for the inhibition of activity by cell adhesion. However, analysis of PA-PTP1B, in which alanines are substituted for prolines 309 and 310, revealed an important role for these residues as the catalytic activity of this mutant did not decrease following readhesion onto collagen I. Since the binding of p130cas and Src to PTP1B is dependent upon these proline residues, we assayed the regulation of PTP1B in mouse embryo fibroblasts deficient in these proteins. We found that neither p130cas nor Src is required for the inhibition of PTP1B activity by adhesion to extracellular matrix proteins. Additionally, pretreatment with cytochalasin D did not prevent the reduction of PTP1B activity when cells adhered to collagen I, indicating that cell spreading is not required for this regulation. The control of the catalytic activity of PTP1B by cell adhesion demonstrated in this study is likely to have important implications for growth factor and insulin signaling.  相似文献   

4.
Apoptosis is a precisely controlled physiological mechanism that is required for the elimination of cells during embryonic development, in response to stress and infection as well as in the maintenance of homeostasis. Since the outcome of several of these biological processes is regulated by signaling events involving tyrosine phosphorylation, members of the protein tyrosine phosphatase (PTP) gene family are expected to be of primary importance. Here, we summarize the current literature linking the activities of classical PTPs with the regulation of apoptosis. The recent discovery of caspase-cleavage mediated modulation of a member of this family, PTP-PEST, indicates that other PTPs could be modulated in a similar manner. In light of this, we present an analysis of all murine and human PTPs gene for the presence of putative caspase cleavage motifs. Additional studies linking the activity of PTPs to their own regulation during programmed cell death initiation should provide important insight into the understanding of this fundamental physiological phenomenon.  相似文献   

5.
PAG/Cbp (hereafter named PAG) is a transmembrane adaptor molecule found in lipid rafts. In resting human T cells, PAG is tyrosine phosphorylated and associated with Csk, an inhibitor of Src-related protein tyrosine kinases. These modifications are rapidly lost in response to T-cell receptor (TCR) stimulation. Overexpression of PAG was reported to inhibit TCR-mediated responses in Jurkat T cells. Herein, we have examined the physiological relevance and the mechanism of PAG-mediated inhibition in T cells. Our studies showed that PAG tyrosine phosphorylation and association with Csk are suppressed in response to activation of normal mouse T cells. By expressing wild-type and phosphorylation-defective (dominant-negative) PAG polypeptides in these cells, we found that the inhibitory effect of PAG is dependent on its capacity to be tyrosine phosphorylated and to associate with Csk. PAG-mediated inhibition was accompanied by a repression of proximal TCR signaling and was rescued by expression of a constitutively activated Src-related kinase, implying that it is due to an inactivation of Src kinases by PAG-associated Csk. We also attempted to identify the protein tyrosine phosphatases (PTPs) responsible for dephosphorylating PAG in T cells. Through cell fractionation studies and analyses of genetically modified mice, we established that PTPs such as PEP and SHP-1 are unlikely to be involved in the dephosphorylation of PAG in T cells. However, the transmembrane PTP CD45 seems to play an important role in this process. Taken together, these data provide firm evidence that PAG is a bona fide negative regulator of T-cell activation as a result of its capacity to recruit Csk. They also suggest that the inhibitory function of PAG in T cells is suppressed by CD45. Lastly, they support the idea that dephosphorylation of proteins on tyrosine residues is critical for the initiation of T-cell activation.  相似文献   

6.
The protein tyrosine kinases (PTK) and the protein tyrosine phosphatases (PTPs) are enzymes which play an integral role in tyrosine phosphorylation-dependent signaling cascades. By catalyzing the phosphorylation and dephosphorylation of cellular proteins, these enzymes direct the steady-state levels of specific phosphoproteins and ultimately dictate the functional state of all cells. The importance of this type of signaling in the skeleton is accepted but poorly understood. The contribution of the PTKs to signaling events in bone has been well studied but, in contrast, the regulation by PTPs is poorly defined. The recent identification of 107 genes within the human genome which encode members of the PTP superfamily emphasizes the need to consider the importance of these proteins in skeletal tissue. In this prospective, we will summarize the present state of our knowledge regarding the function of this enzyme superfamily, illustrating its relevance to the development and maintenance of the skeleton and highlighting future directions that should improve our understanding of these critical signaling molecules.  相似文献   

7.
Maintaining the proper balance between osteoblast-mediated production of bone and its degradation by osteoclasts is essential for health. Osteoclasts are giant phagocytic cells that are formed by fusion of monocyte-macrophage precursor cells; mature osteoclasts adhere to bone tightly and secrete protons and proteases that degrade its matrix. Phosphorylation of tyrosine residues in proteins, which is regulated by the biochemically-antagonistic activities of protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is central in regulating the production of osteoclasts and their bone-resorbing activity. Here we review the roles of individual PTPs of the classical and dual-specificity sub-families that are known to support these processes (SHP2, cyt-PTPe, PTPRO, PTP-PEST, CD45) or to inhibit them (SHP1, PTEN, MKP1). Characterizing the functions of PTPs in osteoclasts is essential for complete molecular level understanding of bone resorption and for designing novel therapeutic approaches for treating bone disease.  相似文献   

8.
Tiganis T 《IUBMB life》2002,53(1):3-14
Protein tyrosine phosphatases (PTPs) are a large and structurally diverse family of enzymes that are found in eukaryotes, prokaryotes, viruses, and plants. PTPs catalyse the dephosphorylation of tyrosyl phosphorylated proteins and can either antagonise or potentiate protein tyrosine kinase signalling. PTPs regulate fundamental cellular processes and have been implicated in the etiology and pathogenesis of various human diseases. The epidermal growth factor receptor (EGFR) is a widely distributed protein tyrosine kinase that regulates both normal development and plays a role in pathological conditions such as cancer. This review discusses the structure and function of PTPs and focuses on the PTPs that have been implicated in the dephosphorylation of the EGFR and the consequent suppression of EGFR signalling.  相似文献   

9.
Osteoclasts are large cells derived from the monocyte-macrophage hematopoietic cell lineage. Their primary function is to degrade bone in various physiological contexts. Osteoclasts adhere to bone via podosomes, specialized adhesion structures whose structure and subcellular organization are affected by mechanical contact of the cell with bone matrix. Ample evidence indicates that reversible tyrosine phosphorylation of podosomal proteins plays a major role in determining the organization and dynamics of podosomes. Although roles of several tyrosine kinases are known in detail in this respect, little is known concerning the roles of protein tyrosine phosphatases (PTPs) in regulating osteoclast adhesion. Here we summarize available information concerning the known and hypothesized roles of the best-researched PTPs in osteoclasts - PTPRO, PTP epsilon, SHP-1, and PTP-PEST. Of these, PTPRO, PTP epsilon, and PTP-PEST appear to support osteoclast activity while SHP-1 inhibits it. Additional studies are required to provide full molecular details of the roles of these PTPs in regulating osteoclast adhesion, and to uncover additional PTPs that participate in this process.  相似文献   

10.
Protein tyrosine phosphatases (PTPs) consist of a large family of enzymes known to play important roles in controlling virtually all aspects of cellular processes. However, assigning functional significance of PTPs in normal physiology and in diseases remains a major challenge in cell signaling. Since the function of a PTP is directly associated with its intrinsic activity, which is subject to post-translational regulation, new tools are needed to monitor the dynamic activities of PTPs, rather than mere abundance, on a global scale within the physiologically relevant environment of cells. To meet this objective, we report the synthesis and characterization of two rhodamine-conjugated probes that covalently label the active site of the PTPs in an activity-dependent manner, thus providing a direct readout of PTP activity and superior sensitivity, robustness, and quantifiability to previously reported biotinylated probes. We present evidence that the fluorescent probes can be used to identify new PTP markers and targets for potential diagnosis and treatment of human diseases. We also show that the fluorescent probes are capable of monitoring H(2)O(2)-mediated PTP inactivation, which should facilitate the study of regulated H(2)O(2) production as a new tier of control over tyrosine phosphorylation-dependent signal transduction. The ability to profile the entire PTP family on the basis of changes in their activity is expected to yield new functional insights into pathways regulated by PTPs and contribute to the discovery of PTPs as novel therapeutic targets.  相似文献   

11.
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed.  相似文献   

12.
Bixby JL 《IUBMB life》2001,51(3):157-163
Virtually every aspect of cellular proliferation and differentiation is regulated by changes in tyrosine phosphorylation. Tyrosine phosphorylation, in turn, is controlled by the opposing activities of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). PTKs are often transmembrane proteins (receptor PTKs) whose enzymatic activities and signaling functions are tightly regulated by the binding of specific ligands. A variety of transmembrane PTPs has also been identified; these proteins are called receptor PTPs (RPTPs), but in most cases their roles as receptors are very poorly understood. This review discusses the evidence that RPTPs are actually receptors for extrinsic ligands, and the extent to which interactions with putative ligands are known or suspected to cause changes in enzymatic activity. Finally, some of the RPTP substrates believed to be physiologically important are described. The evidence gathered to date suggests that models derived from studies of receptor PTKs may be too simple to account for the diversity and complexity of mechanisms through which ligand binding controls RPTP function.  相似文献   

13.
Colorectal cancer is one of the most common oncogenic diseases in the Western world. Several cancer associated cellular pathways have been identified, in which protein phosphorylation and dephosphorylation, especially on tyrosine residues, are one of most abundant regulatory mechanisms. The balance between these processes is under tight control by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Aberrant activity of oncogenic PTKs is present in a large portion of human cancers. Because of the counteracting role of PTPs on phosphorylation-based activation of signal pathways, it has long been thought that PTPs must act as tumor suppressors. This dogma is now being challenged, with recent evidence showing that dephosphorylation events induced by some PTPs may actually stimulate tumor formation. As such, PTPs might form a novel attractive target for anticancer therapy. In this review, we summarize the action of different PTPs, the consequences of their altered expression in colorectal cancer, and their potential as target for the treatment of this deadly disease.  相似文献   

14.
Although members of the protein tyrosine phosphatase (PTP) family are known to play critical roles in various cellular processes through the regulation of protein tyrosine phosphorylation in cooperation with protein tyrosine kinases (PTKs), the physiological functions of individual PTPs are poorly understood. This is due to a lack of information concerning the physiological substrates of the respective PTPs. Several years ago, substrate-trap mutants were developed to identify the substrates of PTPs, but only a limited number of PTP substrates have been identified using typical biochemical techniques in vitro. The application of this strategy to all the PTPs seems difficult, because the substrates identified to date were restricted to relatively abundant and highly tyrosine phosphorylated cellular proteins. Therefore, the development of a standard method applicable to all PTPs has long been awaited. We report here a genetic method to screen for PTP substrates which we have named the "yeast substrate-trapping system." This method is based on the yeast two-hybrid system with two essential modifications: the conditional expression of a PTK to tyrosine-phosphorylate the prey protein, and screening using a substrate-trap PTP mutant as bait. This method is probably applicable to all the PTPs, because it is based on PTP-substrate interaction in vivo, namely the substrate recognition of individual PTPs. Moreover, this method has the advantage that continuously interacting molecules for a PTP are also identified, at the same time, under PTK-noninductive conditions. The identification of physiological substrates will shed light on the physiological functions of individual PTPs.  相似文献   

15.
To study the mechanism by which protein tyrosine phosphatases (PTPs) regulate CD3-induced tyrosine phosphorylation, we investigated the distribution of PTPs in subdomains of plasma membrane. We report here that the bulk PTP activity associated with T cell membrane is present outside the lipid rafts, as determined by sucrose density gradient sedimentation. In Jurkat T cells, approximately 5--10% of Src homology 2 domain-containing tyrosine phosphatase (SHP-1) is constitutively associated with plasma membrane, and nearly 50% of SHP-2 is translocated to plasma membrane after vanadate treatment. Similar to transmembrane PTP, CD45, the membrane-associated populations of SHP-1 and SHP-2 are essentially excluded from lipid rafts, where other signaling molecules such as Lck, linker for activation of T cells, and CD3 zeta are enriched. We further demonstrated that CD3-induced tyrosine phosphorylation of these substrates is largely restricted to lipid rafts, unless PTPs are inhibited. It suggests that a restricted partition of PTPs among membrane subdomains may regulate protein tyrosine phosphorylation in T cell membrane. To test this hypothesis, we targeted SHP-1 into lipid rafts by using the N-terminal region of Lck (residues 1--14). The results indicate that the expression of Lck/SHP-1 chimera inside lipid rafts profoundly inhibits CD3-induced tyrosine phosphorylation of CD3 zeta/epsilon, IL-2 generation, and nuclear mobilization of NF-AT. Collectively, these results suggest that the exclusion of PTPs from lipid rafts may be a mechanism that potentiates TCR/CD3 activation.  相似文献   

16.
Protein tyrosine phosphatases (PTPs) play key roles in switching off tyrosine phosphorylation cascades, such as initiated by cytokine receptors. We have used substrate-trapping mutants of a large set of PTPs to identify members of the PTP family that have substrate specificity for the phosphorylated human GH receptor (GHR) intracellular domain. Among 31 PTPs tested, T cell (TC)-PTP, PTP-beta, PTP1B, stomach cancer-associated PTP 1 (SAP-1), Pyst-2, Meg-2, and PTP-H1 showed specificity for phosphorylated GHR that had been produced by coexpression with a kinase in bacteria. We then used GH-induced, phosphorylated GH receptor, purified from overexpressing mammalian cells, in a Far Western-based approach to test whether these seven PTPs were also capable of recognizing ligand-induced, physiologically phosphorylated GHR. In this assay, only TC-PTP, PTP1B, PTP-H1, and SAP-1 interacted with the mature form of the phosphorylated GHR. In parallel, we show that these PTPs recognize very different subsets of the seven GHR tyrosines that are potentially phosphorylated. Finally, mRNA tissue distribution of these PTPs by RT-PCR analysis and coexpression of the wild-type PTPs to test their ability to dephosphorylate ligand-activated GHR suggest PTP-H1 and PTP1B as potential candidates involved in GHR signaling.  相似文献   

17.
Reaction of radicals in the presence of O2, or singlet oxygen, with some amino acids, peptides, and proteins yields hydroperoxides. These species are key intermediates in chain reactions and protein damage. They can be detected in cells and are poorly removed by enzymatic defenses. Previously we have shown that peptide and protein hydroperoxides react rapidly with thiols, with this resulting in inactivation of some thiol-dependent enzymes. In light of these data, we hypothesized that inactivation of protein tyrosine phosphatases (PTPs), by hydroperoxides present on oxidized proteins, may contribute to cellular and tissue dysfunction by modulation of phosphorylation-dependent cell signaling. We show here that PTPs in cell lysates, and purified PTP-1B, are inactivated by amino acid, peptide, and protein hydroperoxides in a concentration- and structure-dependent manner. Protein hydroperoxides are particularly effective, with inhibition occurring with greater efficacy than with H2O2. Inactivation involves reaction of the hydroperoxide with the conserved active-site Cys residue of the PTPs, as evidenced by hydroperoxide consumption measurements and a diminution of this effect on blocking the Cys residue. This inhibition of PTPs, by oxidized proteins containing hydroperoxide groups, may contribute to cellular dysfunction and altered redox signaling in systems subject to oxidative stress.  相似文献   

18.
Protein tyrosine phosphorylation is a fundamental regulatory mechanism controlling cell proliferation, differentiation, communication, and adhesion. Disruption of this key regulatory mechanism contributes to a variety of human diseases including cancer, diabetes, and auto-immune diseases. Net protein tyrosine phosphorylation is determined by the dynamic balance of the activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Mammals express many distinct PTKs and PTPs. Both of these families can be sub-divided into non-receptor and receptor subtypes. Receptor protein tyrosine kinases (RPTKs) comprise a large family of cell surface proteins that initiate intracellular tyrosine phosphorylation-dependent signal transduction in response to binding of extracellular ligands, such as growth factors and cytokines. Receptor-type protein tyrosine phosphatases (RPTPs) are enzymatic and functional counterparts of RPTKs. RPTPs are a family of integral cell surface proteins that possess intracellular PTP activity, and extracellular domains that have sequence homology to cell adhesion molecules. In comparison to extensively studied RPTKs, much less is known about RPTPs, especially regarding their substrate specificities, regulatory mechanisms, biological functions, and their roles in human diseases. Based on the structure of their extracellular domains, the RPTP family can be grouped into eight sub-families. This article will review one representative member from each RPTP sub-family.  相似文献   

19.
Many pharmacologically important receptors, including all cytokine receptors, signal via tyrosine (auto)phosphorylation, followed by resetting to their original state through the action of protein tyrosine phosphatases (PTPs). Establishing the specificity of PTPs for receptor substrates is critical both for understanding how signaling is regulated and for the development of specific PTP inhibitors that act as ligand mimetics. We have set up a systematic approach for finding PTPs that are specific for a receptor and have validated this approach with the insulin receptor kinase. We have tested nearly all known human PTPs (45) in a membrane binding assay, using "substrate-trapping" PTP mutants. These results, combined with secondary dephosphorylation tests, confirm and extend earlier findings that PTP-1b and T-cell PTP are physiological enzymes for the insulin receptor kinase. We demonstrate that this approach can rapidly reduce the number of PTPs that have a particular receptor or other phosphoprotein as their substrate.  相似文献   

20.
Many studies have illustrated that the production of reactive oxygen species (ROS) is important for optimal tyrosine phosphorylation and signaling in response to diverse stimuli. Protein-tyrosine phosphatases (PTPs), which are important regulators of signal transduction, are exquisitely sensitive to inhibition after generation of ROS, and reversible oxidation is becoming recognized as a general physiological mechanism for regulation of PTP function. Thus, production of ROS facilitates a tyrosine phosphorylation-dependent cellular signaling response by transiently inactivating those PTPs that normally suppress the signal. In this study, we have explored the importance of reversible PTP oxidation in the signaling response to insulin. Using a modified ingel PTP assay, we show that stimulation of cells with insulin resulted in the rapid and transient oxidation and inhibition of two distinct PTPs, which we have identified as PTP1B and TC45, the 45-kDa spliced variant of the T cell protein-tyrosine phosphatase. We investigated further the role of TC45 as a regulator of insulin signaling by combining RNA interference and the use of substrate-trapping mutants. We have shown that TC45 is an inhibitor of insulin signaling, recognizing the beta-subunit of the insulin receptor as a substrate. The data also suggest that this strategy, using ligand-induced oxidation to tag specific PTPs and using interference RNA and substrate-trapping mutants to illustrate their role as regulators of particular signal transduction pathways, may be applied broadly across the PTP family to explore function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号