首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The age-related decline in beta-adrenergic receptor (beta-AR)-mediated vasorelaxation is associated with desensitization of beta-ARs without significant downregulation. The primary mode of this homologous beta-AR desensitization, in general, is via G protein receptor kinases (GRK). Therefore, we hypothesize that age-related changes in GRKs are causative to this etiology in rat aorta. Herein, we investigate the activity and cellular distribution (cytoplasmic vs. membrane) of several GRK isoforms and beta-arrestin proteins. GRK activity was assessed in extracts from aortic tissue of 6-wk, 6-mo, 12-mo, and 24-mo-old male Fischer-344 rats using a rhodopsin phosphorylation assay. We also performed immunoblots on lysates from aorta with specific antibodies to GRK-2, -3, -5, and beta-arrestin-1. Results show an age-related increase in GRK activity. Furthermore, expression of GRK-2 (cytoplasmic and membrane), GRK-3 (cytoplasmic and membrane), and beta-arrestin (soluble) increased with advancing age, whereas GRK-5 (membrane) expression remained unchanged. These results suggest that age is associated with increased activity and expression of specific GRKs. This increase likely results in enhanced phosphorylation and desensitization of beta-ARs. These biochemical changes are consistent with observed aging physiology.  相似文献   

2.
beta-Adrenergic receptor (beta-AR)-mediated (cAMP-dependent) vasorelaxation declines with advancing age. It has been shown that angiotensin II (ANG II), a potent vasoconstrictor, enhances cAMP-mediated vasorelaxation. Therefore, we questioned whether ANG II could reverse age-related, impaired beta-AR-mediated vasorelaxation and cAMP production. Pretreatment of aortic rings from 6-wk-old or 6-mo-old male Fischer 344 rats with ANG II significantly enhanced vasorelaxation induced by isoproterenol (Iso), a beta-AR agonist, and forskolin, a direct activator of adenylyl cyclase, but not dibutyryl-cAMP or isobutylmethylxanthine. The ANG II effect was blocked by losartan but not PD-123319 and was not observed in the aortas from 12- and 24-mo-old animals. Iso-stimulated cAMP production in the aorta was enhanced in the presence of ANG II in the 6-wk-old and 6-mo-old age groups only. Results suggest ANG II cannot reverse the age-related impairment in beta-AR-dependent vasorelaxation. We conclude aging may affect a factor common to both ANG II-receptors and beta-AR signaling pathways or aging may impair cross-talk between these two receptor pathways.  相似文献   

3.
Aging is associated with alterations in beta-adrenergic receptor (beta-AR) signaling and reduction in cardiovascular responses to beta-AR stimulation. Because exercise can attenuate age-related impairment in myocardial beta-AR signaling and function, we tested whether training could also exert favorable effects on vascular beta-AR responses. We evaluated common carotid artery responsiveness in isolated vessel ring preparations from 8 aged male Wistar-Kyoto (WKY) rats trained for 6 wk in a 5 days/wk swimming protocol, 10 untrained age-matched rats, and 10 young WKY rats. Vessels were preconstricted with phenylephrine (10-6 M), and vasodilation was assessed in response to the beta-AR agonist isoproterenol (10-10-3 x 10-8 M), the alpha2-AR agonist UK-14304 (10-9-10-6 M), the muscarinic receptor agonist ACh (10-9-10-6 M), and nitroprusside (10-8-10-5 M). beta-AR density and cytoplasmic beta-AR kinase (beta-ARK) activity were tested on pooled carotid arteries. beta-ARK expression was assessed in two endothelial cell lines from bovine aorta and aorta isolated from a 12-wk WKY rat. beta-AR, alpha2-AR, and muscarinic responses, but not that to nitroprusside, were depressed in untrained aged vs. young animals. Exercise training restored beta-AR and muscarinic responses but did not affect vasodilation induced by UK-14304 and nitroprusside. Aged carotid arteries showed reduced beta-AR number and increased beta-ARK activity. Training counterbalanced these phenomena and restored beta-AR density and beta-ARK activity to levels observed in young rat carotids. Our data indicate that age impairs beta-AR vasorelaxation in rat carotid arteries through beta-AR downregulation and desensitization. Exercise restores this response and reverts age-related modification in beta-ARs and beta-ARK. Our data support an important role for beta-ARK in vascular beta-AR vasorelaxation.  相似文献   

4.
Recent studies have established that testosterone (Tes) produces acute (nongenomic) vasorelaxation. This study examined the structural specificity of Tes-induced vasorelaxation and the role of vascular smooth muscle (VSM) K+ channels in rat thoracic aorta. Aortic rings from male Sprague-Dawley rats with (Endo+) and without endothelium (Endo-) were prepared for isometric tension recording. In Endo- aortas precontracted with phenylephrine, 5-300 microM Tes produced dose-dependent relaxation from 10 microM (4 +/- 1%) to 300 microM (100 +/- 1%). In paired Endo+ and Endo- aortas, Tes-induced vasorelaxation was slightly but significantly greater in Endo+ aortas (at 5-150 microM Tes); sensitivity (EC(50)) of the aorta to Tes was reduced by nearly one-half in Endo- vessels. Based on the sensitivity (EC(50)) of Endo- aortas, Tes, the active metabolite 5alpha-dihydrotestosterone, the major excretory metabolites androsterone and etiocholanolone, the nonpolar esters Tes-enanthate and Tes-hemisuccinate (THS), and THS conjugates to BSA (THS-BSA) exhibited relative potencies for vasorelaxation dramatically different from androgen receptor-mediated effects observed in reproductive tissues, with a rank order of THS-BSA > Tes > androsterone = THS = etiocholanolone > dihydrotestosterone > Tes-enanthate. Pretreatment of aortas with 5 mM 4-aminopyridine attenuated Tes-induced vasorelaxation by an average of 44 +/- 2% (25-300 microM Tes). In contrast, pretreatment of aortas with other K+ channel inhibitors had no effect. These data reveal that Tes-induced vasorelaxation is a structurally specific effect of the androgen molecule, which is enhanced in more polar analogs that have a lower permeability to the VSM cell membrane, and that the effect of Tes involves activation of K+ efflux through K+ channels in VSM, perhaps via the voltage-dependent (delayed-rectifier) K+ channel.  相似文献   

5.
Beta2-Adrenergic and chemokine receptor antagonists delay the onset and reduce the severity of joint injury in rheumatoid arthritis. beta2-Adrenergic and chemokine receptors belong to the G-protein-coupled receptor family whose responsiveness is turned off by the G-protein-coupled receptor kinase family (GRK-1 to 6). GRKs phosphorylate receptors in an agonist-dependent manner resulting in receptor/G-protein uncoupling via subsequent binding of arrestin proteins. We assessed the activity of GRKs in lymphocytes of rheumatoid arthritis (RA) patients by rhodopsin phosphorylation. We found a significant decrease in GRK activity in RA subjects that is mirrored by a decrease in GRK-2 protein expression. Moreover, GRK-6 protein expression is reduced in RA patients whereas GRK-5 protein levels were unchanged. In search of an underlying mechanism, we demonstrated that proinflammatory cytokines induce a decrease in GRK-2 protein levels in leukocytes from healthy donors. Since proinflammatory cytokines are abundantly expressed in RA, it may provide an explanation for the decrease in GRK-2 expression and activity in patients. No changes in beta2-adrenergic receptor number and Kd were detected. However, RA patients showed a significantly increased cAMP production and inhibition of TNF-alpha production by beta2-adrenergic stimulation, suggesting that reduced GRK activity is associated with increased sensitivity to beta2-adrenergic activation.  相似文献   

6.
FSH rapidly desensitizes the FSH-receptor (FSH-R) upon binding. Very little information is available concerning the regulatory proteins involved in this process. In the present study, we investigated whether G protein-coupled receptor kinases (GRKs) and arrestins have a role in FSH-R desensitization, using a mouse Ltk 7/12 cell line stably overexpressing the rat FSH-R as a model. We found that these cells, which express GRK2, GRK3, GRK5, and GRK6 as well as beta-arrestins 1 and 2 as detected by RT-PCR and by Western blotting, were rapidly desensitized in the presence of FSH. Overexpression of GRKs and/or beta-arrestins in Ltk 7/12 cells allowed us to demonstrate 1) that GRK2, -3, -5, -6a, and -6b inhibit the FSH-R-mediated signaling (from 71% to 96% of maximal inhibition depending on the kinase, P < 0.001); 2) that beta-arrestins 1 or 2 also decrease the FSH action when overexpressed (80% of maximal inhibition, P < 0.01) whereas dominant negative beta-arrestin 2 [319-418] potentiates it 8-fold (P < 0.001); 3) that beta-arrestins and GRKs (except GRK6a) exert additive inhibition on FSH-induced response; and 4) that FSH-R desensitization depends upon the endogenous expression of GRKs, since there is potentiation of the FSH response (2- to 3-fold, P < 0.05) with antisenses cDNAs for GRK2, -5, and -6, but not GRK3. Our results show that the desensitization of the FSH-induced response involves the GRK/arrestin system.  相似文献   

7.
Rabbit 15-lipoxygenase-1 (15-LO-1) oxygenates arachidonic acid (AA) into 15-hydroperoxyeicosatetraenoic acid, which is then converted to the vasodilatory 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) and 11,12,15-trihydroxyeicosatrienoic acid (THETA). We studied the age-dependent expression of the 15-LO-1 in rabbit aorta and its effects on the synthesis of THETA, HEETA, and vasoactivity. Aortas of 1-wk-old rabbits express greater amounts of 15-LO-1 mRNA and protein compared with aortas of 4-, 8-, or 16-wk-old rabbits. The synthesis of THETA and HEETA in the rabbit aorta was also reduced with age. THETA synthesis was maximal in 1-wk-old aortas but decreased in aortas of 4- (42%), 8- (4%), and 16-wk-old (1%) rabbits. Similarly, THETA and HEETA synthesis decreased with age in mesenteric arteries from 1-, 4-, 8-, and 16-wk-old rabbits. The maximum vasorelaxation response to acetylcholine (10(-6) M) in the presence of indomethacin and nitro-l-arginine decreased in the order of 1 wk (64.5 +/- 6.9%), 4 wk (52.6 +/- 8.9%), 8 wk (53.0 +/- 9.4%), and 16 wk (33.3 +/- 6.6%). Similarly, the maximum relaxation to AA (3 x 10(-4) M) decreased with age in the order of 1 wk (60.4 +/- 8.9%), 4 wk (56.3 +/- 5.8%), 8 wk (41.8 +/- 12.3%), and 16 wk (28.9 +/- 1.6%). In contrast, the vasorelaxation to sodium nitroprusside was not significantly altered by age. These data indicate that aortic 15-LO-1 expression and activity are downregulated with aging in rabbits. This decrease is paralleled by the reduced synthesis of vasoactive THETA and HEETA and aortic relaxations to acetylcholine and AA.  相似文献   

8.
Estrogen potentiates vascular reactivity to vasopressin (VP) by enhancing constrictor prostanoid function. To determine the cellular and molecular mechanisms, the effects of estrogen on arachidonic acid metabolism and on the expression of constrictor prostanoid pathway enzymes and endoperoxide/thromboxane receptor (TP) were determined in the female rat aorta. The release of thromboxane A2 (TxA2) and prostacyclin (PGI2) was measured in male (M), intact-female (Int-F), ovariectomized-female (OvX-F), and OvX + 17beta-estradiol-replaced female (OvX + ER-F) rats. The expression of mRNA for cyclooxygenase (COX)-1, COX-2, thromboxane synthase (TxS), and TP by aortic endothelium (Endo) and vascular smooth muscle (VSM) of these four experimental groups was measured by RT-PCR. The expression of COX-1, COX-2, and TxS proteins by Endo and VSM was also estimated by immunohistochemistry (IHC). Basal release of TxA2 and PGI2 was similar in M (18.8 +/- 1.9 and 1,723 +/- 153 pg/mg ring wt/45 min, respectively) and Int-F (20.2 +/- 4.2 and 1,488 +/- 123 pg, respectively) rat aortas. VP stimulated the dose-dependent release of TxA2 and PGI2 from both male and female rat aorta. OvX markedly attenuated and ER therapy restored VP-stimulated release of TxA2 and PGI2 in female rats. No differences in COX-1 mRNA levels were detected in either Endo or VSM of the four experimental groups (P > 0.1). The expression of both COX-2 and TxS mRNA were significantly higher (P < 0.05) in both Endo and VSM of Int-F and OvX + ER-F, compared with M or OvX-F. Expression of TP mRNA was significantly higher in VSM of Int-F and OvX + ER-F compared with M or OvX-F. IHC revealed the uniform staining of COX-1 in VSM of the four experimental groups, whereas staining of COX-2 and TxS was greater in Endo and VSM of Int-F and OvX + ER-F than in OvX-F or M rats. These data reveal that estrogen enhances constrictor prostanoid function in female rat aorta by upregulating the expression of COX-2 and TxS in both Endo and VSM and by upregulating the expression of TP in VSM.  相似文献   

9.
Caveolin-1 is a protein constituent of cell membranes. The caveolin-1 scaffolding region (residues 82-101) is a known inhibitor of protein kinase C. Inhibition of protein kinase C results in maintained nitric oxide (NO) release from the endothelium, which attenuates cardiac dysfunction after ischemia-reperfusion (I/R). Therefore, we hypothesized that the caveolin-1 scaffolding region of the molecule, termed caveolin-1 peptide, might attenuate postischemia polymorphonuclear neutrophil (PMN)-induced cardiac dysfunction. We examined the effects of caveolin-1 peptide in isolated ischemic (20 min) and reperfused (45 min) rat hearts reperfused with PMNs. Caveolin-1 peptide (165 or 330 microg) given intravenously 1 h before I/R significantly attenuated postischemic PMN-induced cardiac dysfunction, as exemplified by left ventricular developed pressure (LVDP) (P < 0.01) and the maximal rate of developed pressure (+dP/dt(max)) (P < 0.01), compared with I/R hearts obtained from rats given 0.9% NaCl. In addition, caveolin-1 peptide significantly reduced cardiac PMN infiltration from 195 +/- 5 PMNs/mm2 in untreated hearts to 103 +/- 5 and 60 +/- 5 PMNs/mm2 in hearts from 165 and 330 microg caveolin-1 peptide-treated rats, respectively (P < 0.01). PMN adherence to the rat coronary vasculature was also significantly reduced in rats given either 165 or 330 microg caveolin-1 peptide compared with rats given 0.9% NaCl (P < 0.01). Moreover, caveolin-1 peptide-treated rat aortas exhibited a 2.2-fold greater basal release of NO than vehicle-treated aortas (P < 0.01), and this was inhibited by NG-nitro-L-arginine methyl ester. These results provide evidence that caveolin-1 peptide significantly attenuated PMN-induced post-I/R cardiac contractile dysfunction in the isolated perfused rat heart, probably via enhanced release of endothelium-derived NO.  相似文献   

10.
The lower limits of cerebral blood flow autoregulation shift toward high pressures in aged compared with young rats. Intraluminal pressure stimulates contractile mechanisms in cerebral arteries that might, in part, cause an age-dependent shift in autoregulation. The present project tested two hypotheses. First, cerebral artery tone is greater in isolated arteries from aged compared with mature adult rats. Second, aging decreases the modulatory effect of endothelium-derived nitric oxide (NO) and increases vascular smooth muscle Ca2+ sensitivity. Isolated segments of middle cerebral arteries from male 6-, 12-, 20-, and 24-mo-old Fischer 344 rats were cannulated and loaded with fura-2. Diameter and Ca2+ responses to increasing pressure were measured in HEPES, during NO synthase inhibition [NG-nitro-l-arginine methyl ester (l-NAME)], and after removal of the endothelium. Cerebral artery tone (with endothelium) increased with age. Only at the lowest pressure (20 and 40 mmHg) was intracellular Ca2+ concentration ([Ca2+]i) greater in arteries from 24-mo-old rats compared with the other age groups. l-NAME-sensitive constriction increased significantly in arteries from 6- to 20-mo-old rats but declined significantly thereafter in arteries from 24-mo-old rats. [Ca2+]i was less in arteries from 24-mo-old rats compared with the other groups after treatment with l-NAME. Another endothelial-derived factor, insensitive to l-NAME, also decreased significantly with age. For example, at 60 mmHg, the l-NAME-insensitive constriction decreased from 47 +/- 10, 42 +/- 5, 21 +/- 2, and 3 +/- 1 microm in 6-, 12-, 20-, and 24-mo-old rats, respectively. Our data suggest that aging alters cerebral artery tone and [Ca2+]i responses through endothelial-derived NO synthase-sensitive and -insensitive mechanisms. The combined effect of greater cerebral artery tone with less endothelium-dependent modulation may in part contribute to the age-dependent shift in cerebral blood flow autoregulation.  相似文献   

11.
G-protein-coupled receptor (GPCR) kinases (GRKs) are serine/threonine kinases that desensitize agonist-occupied classical GPCRs. Although the insulin receptor (IR) is a tyrosine kinase receptor, the IR also couples to G-proteins and utilizes G-protein signaling components. The present study was designed to test the hypothesis that GRK2 negatively regulates IR signaling. FL83B cells, derived from mouse liver, were treated with insulin and membrane translocation of GRK2 was determined using immunofluoresecence and Western blotting. Insulin caused an increase in the translocation of GRK-2 from cytosol to the plasma membrane. To determine the role of GRK2 in IR signaling, GRK2 was selectively down-regulated ( approximately by 90%) in FL83B cells using a small interfering RNA technique. Basal as well as insulin-induced glycogen synthesis (measured by d-[U-(14)C]glucose incorporation) was increased in GRK2-deficient cells compared with control cells. Similarly, GRK2 deficiency increased the basal and insulin-stimulated phosphorylation of Ser(21) in glycogen synthase kinase-3alpha. Insulin-induced tyrosine phosphorylation of the IR was similar in control and GRK2-deficient cells. Basal and insulin-stimulated phosphorylation of Tyr(612) in insulin receptor subunit 1 was significantly increased while phosphorylation of Ser(307) was decreased in GRK2-deficient FL83B cells compared with control cells. Chronic insulin treatment (24 h) in control cells caused an increase in GRK2 (56%) and a decrease in IR (50%) expression associated with the absence of an increase in glycogen synthesis, suggesting impairment of IR function. However, chronic insulin treatment (24 h) did not decrease IR expression or impair IR effects on glycogen synthesis in GRK2-deficient cells. We conclude that (i) GRK2 negatively regulates basal and insulin-stimulated glycogen synthesis via a post-IR signaling mechanism, and (ii) GRK2 may contribute to reduced IR expression and function during chronic insulin exposure.  相似文献   

12.
Recent data have demonstrated that caveolin, a major structural protein of caveolae, inhibits the function of molecules involved in cAMP signaling such as adenylyl cyclase. We examined the effect of cAMP signal on the expressions of caveolin subtypes using rat cardiac myoblasts (H9C2 cells) and smooth muscle cells (RASMC), which express caveolin subtypes. Treatment of RASMC and H9C2 cells with forskolin, an adenylyl cyclase stimulator, decreased caveolin-1 mRNA levels in a dose-dependent manner. Time course studies showed a time-dependent decrease of caveolin-1 mRNA levels in H9C2 cells (after 6 hours) while caveolin-1 mRNA levels in RASMC showed a biphasic response, i.e., an initial increase (within 3 hours) and a later decrease (after 3 hours). Similar biphasic changes were observed when RASMC was treated with IBMX, a phosphodiesterase inhibitor. The levels of caveolin-1 and -3 proteins were also decreased by forskolin treatment, but only after 60-72 hours in RASMC and 24-36 hours in H9C2 cells. In contrast, the expression of caveolin-2 remained similar in both cells and decreased to a small degree after prolonged treatment. Therefore, the expression of caveolin is downregulated by cAMP signal in a caveolin subtype-dependent manner.  相似文献   

13.
Phosphorylation of the agonist-activated form of G-protein-coupled receptors (GPCRs) by a protein kinase from the G-protein-coupled receptor kinase (GRK) family initiates, with arrestin proteins, a negative feedback process known as desensitization. Because these receptors are involved in so many vital functions, it seems likely that disorders affecting GRK- or arrestin-mediated regulation of GPCRs would contribute to, if not engender, disease. Traditionally, it is believed that the desensitization process protects the cell against an overstimulation; however, in certain situations, this process is maladjusted and participes in disease progression. For example, in Oguchi disease, excessive rhodopsin stimulation due to a functional loss of GRK1 or arrestin 1 leads to light sensitization and stationary night blindness. Also, transgenic mice with vascular smooth muscle-targeted overexpression of GRK2 showed an elevated resting blood pressure, suggesting that increase in GRK2 level in humans is involved in hypertension associated with a decreased effect of beta-adrenergic receptor-mediated vasorelaxation. The restoration of normal GPCR function in modulating the desensitization process has been successfully demonstrated in animal models of heart failure, which indicates that targeting GRKs or arrestins may open a novel therapeutic strategy in human diseases with GPCR dysregulation. However, the few effective pharmacological compounds in this domain currently preclude human clinical tests.  相似文献   

14.
G protein-coupled receptor kinase 2 (GRK2) is a serine/theorinine kinase that phosphorylates and desensitizes agonist-bound G protein-coupled receptors. GRK2 is increased in expression and activity in lymphocytes and vascular smooth muscle (VSM) in human hypertension and animal models of the disease. Inhibition of GRK2 using the carboxyl-terminal portion of the protein (GRK2ct) has been an effective tool to restore compromised beta-adrenergic receptor (AR) function in heart failure and improve outcome. A well-characterized dysfunction in hypertension is attenuation of betaAR-mediated vasodilation. Therefore, we tested the role of inhibition of GRK2 using GRK2ct or VSM-selective GRK2 gene ablation in a renal artery stenosis model of elevated blood pressure (BP) [the two-kidney, one-clip (2K1C) model]. Use of the 2K1C model resulted in a 30% increase in conscious BP, a threefold increase in plasma norepinephrine levels, and a 50% increase in VSM GRK2 mRNA levels. BP remained increased despite VSM-specific GRK2 inhibition by either GRK2 knockout (GRK2KO) or peptide inhibition (GRK2ct). Although betaAR-mediated dilation in vivo and in situ was enhanced, alpha(1)AR-mediated vasoconstriction was also increased. Further pharmacological experiments using alpha(1)AR antagonists revealed that GRK2 inhibition of expression (GRK2KO) or activity (GRK2ct) enhanced alpha(1D)AR vasoconstriction. This is the first study to suggest that VSM alpha(1D)ARs are a GRK2 substrate in vivo.  相似文献   

15.
16.
G-protein-coupled receptor kinase 2 (GRK2) is activated by free Gbetagamma subunits. A Gbetagamma binding site of GRK2 is localized in the carboxyl-terminal pleckstrin homology domain. This Gbetagamma binding site of GRK2 also regulates Gbetagamma-stimulated signaling by sequestering free Gbetagamma subunits. We report here that truncation of the carboxyl-terminal Gbetagamma binding site of GRK2 did not abolish the Gbetagamma regulatory activity of GRK2 as determined by the inhibition of a Gbetagamma-stimulated increase in inositol phosphates in cells. This finding suggested the presence of a second Gbetagamma binding site in GRK2. And indeed, the amino terminus of GRK2 (GRK2(1-185)) inhibited a Gbetagamma-stimulated inositol phosphate signal in cells, purified GRK2(1-185) suppressed the Gbetagamma-stimulated phosphorylation of rhodopsin, and GRK2(1-185) bound directly to purified Gbetagamma subunits. The amino-terminal Gbetagamma regulatory site does not overlap with the RGS domain of GRK-2 because GRK2(1-53) with truncated RGS domain inhibited Gbetagamma-mediated signaling with similar potency and efficacy as did GRK2(1-185). In addition to the Gbetagamma regulatory activity, the amino-terminal Gbetagamma binding site of GRK2 affects the kinase activity of GRK2 because antibodies specifically cross-reacting with the amino terminus of GRK2 suppressed the GRK2-dependent phosphorylation of rhodopsin. The antibody-mediated inhibition was released by purified Gbetagamma subunits, strongly suggesting that Gbetagamma binding to the amino terminus of GRK2 enhances the kinase activity toward rhodopsin. Thus, the amino-terminal domain of GRK2 is a previously unrecognized Gbetagamma binding site that regulates GRK2-mediated receptor phosphorylation and inhibits Gbetagamma-stimulated signaling.  相似文献   

17.
beta-adrenergic receptors (beta-ARs), prototypic G-protein-coupled receptors (GPCRs), play a critical role in regulating numerous physiological processes. The GPCR kinases (GRKs) curtail G-protein signaling and target receptors for internalization. Nitric oxide (NO) and/or S-nitrosothiols (SNOs) can prevent the loss of beta-AR signaling in vivo, but the molecular details are unknown. Here we show in mice that SNOs increase beta-AR expression and prevent agonist-stimulated receptor downregulation; and in cells, SNOs decrease GRK2-mediated beta-AR phosphorylation and subsequent recruitment of beta-arrestin to the receptor, resulting in the attenuation of receptor desensitization and internalization. In both cells and tissues, GRK2 is S-nitrosylated by SNOs as well as by NO synthases, and GRK2 S-nitrosylation increases following stimulation of multiple GPCRs with agonists. Cys340 of GRK2 is identified as a principal locus of inhibition by S-nitrosylation. Our studies thus reveal a central molecular mechanism through which GPCR signaling is regulated.  相似文献   

18.
G-protein-coupled receptor kinase (GRK)-2 and -5 are emerging therapeutic targets for the treatment of cardiovascular disease. In our efforts to discover novel small molecules to inhibit GRK-2 and -5, a class of compound based on 3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine was identified as a novel hit by high throughput screening campaign. Structural modification of parent benzoxazole scaffolds by introducing substituents on phenyl displayed potent inhibitory activities toward GRK-2 and -5.  相似文献   

19.
G protein-coupled receptor kinases (GRKs) are a family of serine/threonine kinases that phosphorylate many activated G protein-coupled receptors (GPCRs) and play an important role in GPCR desensitization. Our previous work has demonstrated that the C-terminal conserved region (CC) of GRK-2 participates in interaction with rhodopsin and that this interaction is necessary for GRK-2-mediated receptor phosphorylation (Gan, X. Q., Wang, J. Y., Yang, Q. H., Li, Z., Liu, F., Pei, G., and Li, L. (2000) J. Biol. Chem. 275, 8469-8474). In this report, we further investigated whether the CC of other GRKs had the same functions and defined the specific sequences in CC that are required for the functions. The CC regions of GRK-1, GRK-2, and GRK-5, representatives of the three subfamilies of GRKs, could bind rhodopsin in vitro and inhibit GRK-2-mediated phosphorylation of rhodopsin, but not a peptide GRK substrate. Through a series of mutagenesis analyses, a proline-rich motif in the CC was identified as the key element involved in the interaction between the CC region and rhodopsin. Point mutations of this motif not only disrupted the interaction of GRK-2 with rhodopsin but also abolished the ability of GRK-2 to phosphorylate rhodopsin. The findings that the CC region of GRKs interact only with the light-activated but not the non-activated rhodopsin and that the N-terminal domain of GRK-2 interacts with rhodopsin in a light-independent manner suggest that the CC region is responsible for the recognition of activated GPCRs in the canonical model.  相似文献   

20.
As a signalling molecule of the integral membrane protein family, caveolin participates in cellular signal transduction via interaction with other signalling molecules. The nature of interaction between nitric oxide (NO) and caveolin in the brain, however, remains largely unknown. In this study we investigated the role(s) of NO in regulating caveolin-1 expression in rat ischemic brains with middle cerebral artery occlusion (MCAO). Exposure to 1 h ischemia induced the increases in neuronal nitric oxide synthase (nNOS) and NO concentration with concurrent down-regulation of caveolin-1 expression in the ischemic core of rat brains. Subsequent 24 h or more reperfusion time led to an increase in inducible NOS (iNOS) expression and NO production, as well as a decline of caveolin-1 protein at the core and penumbra of the ischemic brain. Afterwards, NOS inhibitors and an NO donor were utilized to clarify the link between NO production and caveolin-1 expression in the rats with 1 h ischemia plus 24 h reperfusion. N(G)-nitro-l-arginine methyl ester (L-NAME, a non-selective NOS inhibitor), N(6)-(1-iminoethyl)-lysine (NIL, an iNOS inhibitor), and 7-nitroindazole (7-NI, a nNOS inhibitor) prevented the loss of caveolin-1 in the core and penumbra of the ischemic brain, whereas l-N(5)-(1-iminoethyl)-ornithine (L-NIO, an endothelial NOS inhibitor) showed less effect than the other NOS inhibitors. S-Nitroso-N-acetylpenicillamine (SNAP, a NO donor) down-regulated the expression of caveolin-1 protein in normal and ischemic brains. These results, when taken together, suggest that NO modulates the expression of caveolin-1 in the brain and that the loss of caveolin-1 is associated with NO production in the ischemic brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号