首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the progression of vascular dysfunction associated with the metabolic syndrome with and without hyperglycemia in lean, Zucker obese, and Zucker diabetic fatty (ZDF) rats. Responses of aorta and small coronary and mesenteric arteries were measured to endothelium-dependent and -independent vasodilators. Indices of oxidative stress were increased in serum from ZDF rats throughout the study, whereas values were increased in Zucker obese rats later in the study [thiobarbituric acid reactive substances: 0.45 +/- 0.02, 0.59 +/- 0.03 (P < 0.05), and 0.58 +/- 0.03 (P < 0.05) mug/ml in serum from 28- to 40-wk-old lean, Zucker obese, and ZDF rats, respectively]. Acetylcholine (ACh)-induced relaxation was not altered in vessels from lean animals from 8-40 wk. ACh-induced relaxation was nearly abolished in coronary arteries from 28- to 36-wk-old Zucker obese rats and by 16-36 wk in ZDF rats and was attenuated in aorta and mesenteric vessels from ZDF rats [%relaxation to 10 muM ACh: 72.2 +/- 7.1, 17.9 +/- 5.9 (P < 0.05), and 23.0 +/- 4.5 (P < 0.05) in coronary vessels; and 67.9 +/- 9.2, 50.1 +/- 5.5, and 42.3 +/- 4.7 (P < 0.05) in mesenteric vessels from 28- to 40-wk-old lean, Zucker obese, and ZDF rats, respectively]. The attenuated ACh-induced relaxation was improved when vessels were incubated with tiron, suggesting superoxide as a mechanism of endothelial dysfunction. Sodium nitroprusside-induced relaxation was not altered in aorta or coronary arteries and was potentiated in mesenteric arteries from Zucker obese rats. Our data suggest that diabetes enhances the progression of vascular dysfunction. Increases in indices of oxidative stress precede the development of dysfunction and may serve as a marker of endothelial damage.  相似文献   

2.
We recently reported that the lipoxygenase product 11,12,15-trihydroxyeicosatrienoic acid (THETA) mediates arachidonic acid (AA)-induced relaxation in the rabbit aorta. This study was designed to determine whether this lipoxygenase metabolite is involved in relaxation responses to AA in rabbit small mesenteric arteries. AA (10(-9)-10(-4) M) produced potent relaxations in isolated phenylephrine-preconstricted arteries, with a maximal relaxation of 99 +/- 0.5% and EC(50) of 50 nM. The cyclooxygenase (COX) inhibitors indomethacin (10 microM), NS-398 (10 microM, selective for COX-2), and SC-560 (100 nM, selective for COX-1) caused a marked rightward shift of concentration responses to AA. With the use of immunohistochemical analysis, both COX-1 and COX-2 were detected in endothelium and smooth muscle of small mesenteric arteries. Indomethacin-resistant relaxations were further reduced by the lipoxygenase inhibitors cinnamyl-3,4-dihydroxy-cyanocinnamate (CDC; 1 muM), nordihydroguaiaretic acid (NDGA; 1 microM), and ebselen (1 microM). HPLC analysis showed that [(14)C]AA was metabolized by mesenteric arteries to PGI(2), PGE(2), THETAs, hydroxyepoxyeicosatrienoic acids (HEETAs), and 15-hydroxyeicosatetraenoic acid (15-HETE). The production of PGI(2) and PGE(2) was blocked by indomethacin, and the production of THETAs, HEETAs, and 15-HETE was inhibited by CDC and NDGA. Column fractions corresponding to THETAs were further purified, analyzed by gas chromatography/mass spectrometry, and identified as 11,12,15- and 11,14,15-THETA. PGI(2), PGE(2), and purified THETA fractions relaxed mesenteric arteries precontracted with phenylephrine. The AA- and THETA-induced relaxations were blocked by high K(+) (60 mM). These findings provide functional and biochemical evidence that AA-induced relaxation in rabbit small mesenteric arteries is mediated through both COX and lipoxygenase pathways.  相似文献   

3.
Endothelial dysfunction in resistance arteries alters end organ perfusion in type 2 diabetes. Superoxides and cyclooxygenase-2 (COX-2) derivatives have been shown separately to alter endothelium-mediated relaxation in aging and diabetes but their role in the alteration of vascular tone in old diabetic subjects is not clear, especially in resistance arteries. Consequently, we investigated the role of superoxide and COX-2-derivatives on endothelium-dependent relaxation in 3 and 12 month-old Zucker diabetic fatty (ZDF) and lean (LZ) rats. Mesenteric resistance arteries were isolated and vascular tone was investigated using wire-myography. Endothelium (acetylcholine)-dependent relaxation was lower in ZDF than in LZ rats (60 versus 84% maximal relaxation in young rats and 41 versus 69% in old rats). Blocking NO production with L-NAME was less efficient in old than in young rats. L-NAME had no effect in old ZDF rats although eNOS expression level in old ZDF rats was similar to that in old LZ rats. Superoxide level and NADPH-oxidase subunits (p67phox and gp91phox) expression level were greater in ZDF than in LZ rats and were further increased by aging in ZDF rats. In young ZDF rats reducing superoxide level with tempol restored acetylcholine-dependent relaxation to the level of LZ rats. In old ZDF rats tempol improved acetylcholine-dependent relaxation without increasing it to the level of LZ rats. COX-2 (immunolabelling and Western-blot) was present in arteries of ZDF rats and absent in LZ rats. In old ZDF rats arterial COX-2 level was higher than in young ZDF rats. COX-2 blockade with NS398 restored in part acetylcholine-dependent relaxation in arteries of old ZDF rats and the combination of tempol and NS398 fully restored relaxation in control (LZ rats) level. Accordingly, superoxide production and COX-2 derivatives together reduced endothelium-dependent relaxation in old ZDF rats whereas superoxides alone attenuated relaxation in young ZDF or old LZ rats.  相似文献   

4.
This study investigated the role of changes in the expression of the cytochrome P-450 4A (CYP450-4A) enzymes that produce 20-hydroxyeicosatetraenoic acid (20-HETE) in modulating the responses of rat mesenteric resistance arteries to norepinephrine (NE) and reduced Po(2) after short-term (3-day) changes in dietary salt intake. The CYP450-4A2, -4A3, and -4A8 isoforms were all detected by RT-PCR in arteries obtained from rats fed a high-salt (HS, 4% NaCl) diet, whereas only the CYP450-4A3 isoform was detected in vessels from rats fed a low-salt (LS, 0.4% NaCl) diet. Expression of the 51-kDa CYP450-4A protein was significantly increased by a HS diet. Inhibiting 20-HETE synthesis with 30 muM N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) reduced the vasoconstrictor response to NE in arteries obtained from rats fed either a LS or HS diet, but NE sensitivity after DDMS treatment was significantly lower in vessels from rats on a HS diet. DDMS treatment also restored the vasodilator response to reduced Po(2) that was impaired in arteries from rats on a HS diet. These findings suggest that 1) a HS diet increases the expression of CYP450-4A enzymes in the mesenteric vasculature, 2) 20-HETE contributes to the vasoconstrictor response to NE in mesenteric resistance arteries, 3) the contribution of 20-HETE to the vasoconstrictor response to NE is greater in rats fed a HS diet than in rats fed a LS diet, and 4) upregulation of the production of 20-HETE contributes to the impaired dilation of mesenteric resistance arteries in response to hypoxia in rats fed a HS diet.  相似文献   

5.
We have examined the progression of vascular and neural deficits in Zucker rats, Zucker diabetic fatty (ZDF) diabetic rats, and age-matched lean ZDF rats from 8 to 40 wk of age. Both the ZDF diabetic and Zucker rats were glucose intolerant at 8 wk of age. The Zucker rats did not become hyperglycemic but were hyperinsulinemic through 32 wk of age. All ZDF diabetic rats became hyperglycemic by 8 wk of age. Through their life span, serum free fatty acids and triglycerides levels were significantly higher in Zucker and ZDF diabetic rats compared with age-matched lean ZDF rats. After 24 and 28 wk of age, endoneurial blood flow was significantly decreased in ZDF diabetic and Zucker rats. Motor nerve conduction velocity was significantly decreased after 12-14 wk of age in ZDF diabetic rats and at 32 wk of age in Zucker rats. ACh-mediated vascular relaxation of epineurial arterioles of the sciatic nerve was impaired after 8-10 wk of age in ZDF diabetic rats and after approximately 16 wk of age in Zucker rats. In contrast, vascular relaxation mediated by calcitonin gene-related peptide was impaired significantly after 28 wk of age in ZDF diabetic rats but not impaired in Zucker rats up to 40 wk of age. Markers of oxidative stress were differentially elevated in ZDF diabetic rats and Zucker rats. These data indicate that vascular and neural dysfunction develops in both Zucker and ZDF diabetic rats but at different rates, which may be the result of hyperglycemia.  相似文献   

6.
12-lipoxygenase (12-LO) was implicated in the development of diabetic nephropathy (DN), in which the proteinuria was thought to be associated with a decreased expression of glomerular P-cadherin. Therefore, we investigated the role of 12-LO in the glomerular P-cadherin expression in type 2 diabetic rats according to the glomerular sizes. Rats fed with high-fat diet for 6 wk were treated with low-dose streptozotocin. Once diabetes onset, diabetic rats were treated with 12-LO inhibitor cinnamyl-3,4-dihydroxy-cyanocinnamate (CDC) for 8 wk. Then glomeruli were isolated from diabetic and control rats with a sieving method. RT-PCR, Western blotting, and immunofluorescent staining were used for mRNA and protein expressions of P-cadherin and angiotensin II (Ang II) type 1 receptor (AT1). We found that CDC did not affect the glucose levels but completely attenuated diabetic increases in glomerular volume and proteinuria. Diabetes significantly decreased the P-cadherin mRNA and protein expressions and increased the AT1 mRNA and protein expressions in the glomeruli. These changes were significantly prevented by CDC and recaptured by direct infusion of 12-LO product [12(S)-HETE] to normal rats for 7 days. The decreased P-cadherin expression was similar between large and small glomeruli, but the increased AT1 expression was significantly higher in the large than in the small glomeruli from diabetic and 12(S)-HETE-treated rats. Direct infusion of normal rats with Ang II for 14 days also significantly decreased the glomerular P-cadherin expression. These results suggest that diabetic proteinuria is mediated by the activation of 12-LO pathway that is partially attributed to the decreased glomerular P-cadherin expression.  相似文献   

7.
We measured infarct size after coronary occlusion (30 min) and reperfusion (24 h) in genetic non-insulin-dependent Zucker diabetic fatty (ZDF) rats with and without 4-wk cholesterol feeding. Infarct size was similar in ZDF rats and lean control rats but was significantly larger in cholesterol-fed diabetic rats than in cholesterol-fed lean rats (P < 0.05). Plasma levels of glucose, insulin, and triglycerides were significantly higher in diabetic rats and were not influenced by cholesterol feeding. The increase in total plasma cholesterol induced by cholesterol feeding was significantly greater in diabetic rats than in lean rats (P < 0.05). A significant positive correlation was found between total plasma cholesterol and infarct size (P < 0.05). Myeloperoxidase activity, as an index of neutrophil accumulation, was significantly higher and expression of P-selectin was more marked in the ischemic myocardium of cholesterol-fed diabetic rats than of cholesterol-fed lean rats. Acetylcholine-induced endothelium-dependent relaxation (EDR) of aortic rings was markedly impaired in cholesterol-fed diabetic rats. Thus cholesterol feeding significantly exacerbated myocardial injury produced by coronary occlusion-reperfusion in non-insulin-dependent diabetic rats, possibly because of enhanced expression of P-selectin and impairment of EDR in the coronary bed.  相似文献   

8.
Oxygen promotes closure of the ductus arteriosus at birth. We have previously presented a scheme for oxygen action with a cytochrome P450 (CYP450) hemoprotein and endothelin-1 (ET-1) being, respectively, sensor and effector, and a hypothetical monooxygenase product serving as a coupling link. We have also found in the vessel arachidonic acid (AA) 12(S)-lipoxygenase (12-lipoxygenase) undergoing upregulation at birth. Here, we examined the feasibility of a sensor-to-effector messenger originating from AA monooxygenase and 12-lipoxygenase pathways. The epoxygenase inhibitor, N-methylsulfonyl-6-(2-)hexanamide, suppressed the tonic contraction of ductus to oxygen. A similar effect was obtained with 12-lipoxygenase inhibitors baicalein and PD 146176. By contrast, none of the inhibitors modified the endothelin-1 contraction. Furthermore, an AA ω-hydroxylation product, 20-hydroxyeicosatetraenoic acid (20-HETE), reportedly responsible for oxygen contraction in the systemic microvasculature, had no such effect on the ductus. We conclude that AA epoxygenase and 12-lipoxygenase jointly produce a hitherto uncharacterized compound acting as oxygen messenger in the ductus.  相似文献   

9.
The 12-lipoxygenase (12-LO) pathway of arachidonic acid metabolism stimulates cell growth and metastasis of various cancer cells and the 12-LO metabolite, 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], enhances proliferation of aortic smooth muscle cells (SMCs). However, pulmonary vascular effects of 12-LO have not been previously studied. We sought evidence for a role of 12-LO and 12(S)-HETE in the development of hypoxia-induced pulmonary hypertension. We found that 12-LO gene and protein expression is elevated in lung homogenates of rats exposed to chronic hypoxia. Immunohistochemical staining with a 12-LO antibody revealed intense staining in endothelial cells of large pulmonary arteries, SMCs (and possibly endothelial cells) of medium and small-size pulmonary arteries and in alveolar walls of hypoxic lungs. 12-LO protein expression was increased in hypoxic cultured rat pulmonary artery SMCs. 12(S)-HETE at concentrations as low as 10(-5) microM stimulated proliferation of pulmonary artery SMCs. 12(S)-HETE induced ERK 1/ERK 2 phosphorylation but had no effect on p38 kinase expression as assessed by Western blotting. 12(S)-HETE-stimulated SMC proliferation was blocked by the MEK inhibitor PD-98059, but not by the p38 MAPK inhibitor SB-202190. Hypoxia (3%)-stimulated pulmonary artery SMC proliferation was blocked by both U0126, a MEK inhibitor, and baicalein, an inhibitor of 12-LO. We conclude that 12-LO and its product, 12(S)-HETE, are important intermediates in hypoxia-induced pulmonary artery SMC proliferation and may participate in hypoxia-induced pulmonary hypertension.  相似文献   

10.
Noncyclooxygenase metabolites of arachidonic acid (AA) have been proposed to mediate endothelium-dependent vasodilation in the coronary microcirculation. Therefore, we examined the formation and bioactivity of AA metabolites in porcine coronary (PC) microvascular endothelial cells and microvessels, respectively. The major noncyclooxygenase metabolite produced by microvascular endothelial cells was 12(S)-hydroxyeicosatetraenoic acid (HETE), a lipoxygenase product. 12(S)-HETE release was markedly increased by pretreatment with 13(S)-hydroperoxyoctadecadienoic acid but not by the reduced congener 13(S)-hydroxyoctadecadienoic acid, suggesting oxidative upregulation of 12(S)-HETE output. 12(S)-HETE produced potent relaxation and hyperpolarization of PC microvessels (EC(50), expressed as -log[M] = 13.5 +/- 0.5). Moreover, 12(S)-HETE potently activated large-conductance Ca(2+)-activated K(+) currents in PC microvascular smooth muscle cells. In contrast, 12(S)-HETE was not a major product of conduit PC endothelial AA metabolism and did not exhibit potent bioactivity in conduit PC arteries. We suggest that, in the coronary microcirculation, 12(S)-HETE can function as a potent hyperpolarizing vasodilator that may contribute to endothelium-dependent relaxation, particularly in the setting of oxidative stress.  相似文献   

11.
Recent studies in our laboratory using the Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rat models resulted in unexpectedly high mortality rates in all genotypes including healthy homozygous lean Zucker rats, possibly because of renal dysfunction. Therefore, we evaluated left ventricular (LV) and kidney morphology and function in young ZO, Zucker diabetic fatty obese (ZDFO), homozygous Zucker/ZDF lean (ZL), and Sprague-Dawley (SD) rats. Hydronephrosis was evident in ZL, ZO, and ZDFO but not SD kidneys. ZDFO rats exhibited impaired LV shortening and relaxation with increased arterial stiffness. LV wall thickness was lower and LV end-systolic wall stress was higher in ZDFO compared with SD rats. Plasma ANG II was lower in ZO and ZDFO rats, which may be a result of reduced renal parenchyma with hydronephrosis; norepinephrine was higher in ZDFO rats than SD controls. Covariate analysis indicated that LV end-systolic wall stress was associated with renal dysfunction. The presence of hydronephrosis and its association with LV dysfunction potentially limits the ZDF model for study of the effects of diabetes on renal and cardiovascular function.  相似文献   

12.
Arachidonic acid (AA) metabolites function as EDHFs in arteries of many species. They mediate cyclooxygenase (COX)- and nitric oxide (NO)-independent relaxations to acetylcholine (ACh). However, the role of AA metabolites as relaxing factors in mouse arteries remains incompletely defined. ACh caused concentration-dependent relaxations of the mouse thoracic and abdominal aorta and carotid, femoral, and mesentery arteries (maximal relaxation: 57 ± 4%, 72 ± 4%, 82 ± 3%, 80 ± 3%, and 85 ± 3%, respectively). The NO synthase inhibitor nitro-L-arginine (L-NA; 30 μM) blocked relaxations in the thoracic aorta, and L-NA plus the COX inhibitor indomethacin (10 μM) inhibited relaxations in the abdominal aorta and carotid, femoral, and mesenteric arteries (maximal relaxation: 31 ± 10%, 33 ± 5%, 41 ± 8%, and 73 ± 3%, respectively). In mesenteric arteries, NO- and COX-independent relaxations to ACh were inhibited by the lipoxygenase (LO) inhibitors nordihydroguaiaretic acid (NDGA; 10 μM) and BW-755C (200 μM), the K(+) channel inhibitor apamin (1 μM), and 60 mM KCl and eliminated by endothelium removal. They were not altered by the cytochrome P-450 inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (20 μM) or the epoxyeicosatrienoic acid antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (10 μM). AA relaxations were attenuated by NDGA or apamin and eliminated by 60 mM KCl. Reverse-phase HPLC analysis revealed arterial [(14)C]AA metabolites that comigrated with prostaglandins, trihydroxyeicosatrienoic acids (THETAs), hydroxyepoxyeicosatrienoic acids (HEETAs), and hydroxyeicosatetraenoic acids (HETEs). Epoxyeicosatrienoic acids were not observed. Mass spectrometry confirmed the identity of 6-keto-PGF(1α), PGE(2), 12-HETE, 15-HETE, HEETAs, 11,12,15-THETA, and 11,14,15-THETA. AA metabolism was blocked by NDGA and endothelium removal. 11(R),12(S),15(S)-THETA relaxations (maximal relaxation: 73 ± 3%) were endothelium independent and blocked by 60 mM KCl. Western immunoblot analysis and RT-PCR of the aorta and mesenteric arteries demonstrated protein and mRNA expression of leukocyte-type 12/15-LO. Thus, in mouse resistance arteries, 12/15-LO AA metabolites mediate endothelium-dependent relaxations to ACh and AA.  相似文献   

13.
We determined the effect of 48-h elevation of plasma free fatty acids (FFA) on insulin secretion during hyperglycemic clamps in control female Wistar rats (group a) and in the following female rat models of progressive beta-cell dysfunction: lean Zucker diabetic fatty (ZDF) rats, both wild-type (group b) and heterozygous for the fa mutation in the leptin receptor gene (group c); obese (fa/fa) Zucker rats (nonprediabetic; group d); obese prediabetic (fa/fa) ZDF rats (group e); and obese (fa/fa) diabetic ZDF rats (group f). FFA induced insulin resistance in all groups but increased C-peptide levels (index of absolute insulin secretion) only in obese prediabetic ZDF rats. Insulin secretion corrected for insulin sensitivity using a hyperbolic or power relationship (disposition index or compensation index, respectively, both indexes of beta-cell function) was decreased by FFA. The decrease was greater in normoglycemic heterozygous lean ZDF rats than in Wistar controls. In obese "prediabetic" ZDF rats with mild hyperglycemia, the FFA-induced decrease in beta-cell function was no greater than that in obese Zucker rats. However, in overtly diabetic obese ZDF rats, FFA further impaired beta-cell function. In conclusion, 1) the FFA-induced impairment in beta-cell function is accentuated in the presence of a single copy of a mutated leptin receptor gene, independent of hyperglycemia. 2) In prediabetic ZDF rats with mild hyperglycemia, lipotoxicity is not accentuated, as the beta-cell mounts a partial compensatory response for FFA-induced insulin resistance. 3) This compensation is lost in diabetic rats with more marked hyperglycemia and loss of glucose sensing.  相似文献   

14.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPARgamma in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPARgamma agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPARgamma, glucose transporter-4 and alpha-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPARgamma, glut-4, and alpha-MHC expression levels in diabetic ZDF rats. Cardiac [(18)F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPARgamma agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPARgamma expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin.  相似文献   

15.
Previous studies suggest that epoxyeicosatrienoic acids (EETs) are vasodilators of the mesenteric artery; however, the production and regulation of EETs in the mesenteric artery remain unclear. The present study was designed 1) to determine which epoxygenase isoform may contribute to formation of EETs in mesenteric arteries and 2) to determine the regulation of mesenteric artery cytochrome P-450 (CYP) enzymes in obese Zucker rats. Microvessels were incubated with arachidonic acid, and CYP enzyme activity was determined. Mesenteric arteries demonstrate detectable epoxygenase and hydroxylase activities. Next, protein and mRNA expressions were determined in microvessels. Although renal microvessels express CYP2C23 mRNA and protein, mesenteric arteries lacked CYP2C23 expression. CYP2C11 and CYP2J mRNA and protein were expressed in mesenteric arteries and renal microvessels. In addition, mesenteric artery protein expression was evaluated in lean and obese Zucker rats. Compared with lean Zucker rats, mesenteric arterial CYP2C11 and CYP2J proteins were decreased by 38 and 43%, respectively, in obese Zucker rats. In contrast, soluble epoxide hydrolase mRNA and protein expressions were significantly increased in obese Zucker rat mesenteric arteries. In addition, nitric oxide-independent dilation evoked by acetylcholine was significantly attenuated in mesenteric arteries of obese Zucker rats. These data suggest that the main epoxygenase isoforms expressed in mesenteric arteries are different from those expressed in renal microvessels and that decreased epoxygenases and increased soluble epoxide hydrolase are associated with impaired mesenteric artery dilator function in obese Zucker rats.  相似文献   

16.
12/15-lipoxygenase inhibitors in diabetic nephropathy in the rat   总被引:3,自引:0,他引:3  
The 12/15-lipoxygenase (12/15-LO) pathway is activated in diabetes mellitus (DM), increasing 12(S)-hydroxyeicosatetraenoic acid (12-HETE). We showed that a 12-LO inhibitor, cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate (CDC) inhibited 12/15-LO activity in vivo and assessed the efficacy of another 12/15-LO inhibitor, N-benzyl-N-hydroxy-5-phenylpentamidine (BHPP), to diminish urinary 12-HETE and ameliorate diabetic nephropathy (DN) over 4 months. Rats studied were control (C, n=8), DM (n=6), and rats injected with BHPP (C+BHPP, n=4) and (DM+BHPP, n=5). BHPP 3 mg/kg/day decreased urinary (U) 12-HETE/creatinine (cr) by 30-50% after one injection and after 1 week of daily injections in DM rats. U 12-HETE/cr excretion increased paradoxically in controls given BHPP. There was a highly significant relationship between U 12-HETE/cr excretion and U alb/cr (r=0.79, P<10(-5)), demonstrating that renal 12/15-LO pathway activation is associated with albuminuria. BHPP did not inhibit glomerular collagen synthesis or improve histology. More sustained 12-LO inhibition may improve albuminuria in DN.  相似文献   

17.
Vascular responses to agonists in rat mesenteric artery from diabetic rats   总被引:5,自引:0,他引:5  
The effect of diabetes on vascular smooth muscle function was investigated in the muscular arteries from spontaneously and chemically induced diabetic rats. Isolated ring segments of superior mesenteric arteries from BB diabetic and streptozotocin (STZ)-diabetic rats (12 weeks after onset of diabetes) were used for isometric tension studies. Contractile responses to alpha-adrenoceptor agonists (norepinephrine, methoxamine, phenylephrine, B-HT 920, guanabenz, SKF 89748-A), serotonin, and K+ were significantly higher in STZ-diabetic rat arteries as compared with the controls. In spontaneously diabetic rat arteries only the contractile responses to the putatively selective alpha 2-adrenoceptor agonists, K+ and prostaglandin E1, were significantly increased. pD2 values of the agonists in both groups of diabetic arteries were not significantly different from the respective controls. Nifedipine inhibited all contractile responses in a dose-dependent fashion. The responses to K+ and alpha 2-adrenoceptor agonists were attenuated to a greater extent by nifedipine in both groups of diabetic blood vessels. The calcium channel activator, BAY K 8644, produced a twofold increase in force of contraction in streptozotocin-diabetic and spontaneously diabetic rat arteries as compared with the responses in their respective controls. These results suggest caution in extrapolating all the findings from the streptozocin-induced diabetic model to the spontaneously diabetic model. However, increased activity of calcium channels in vascular muscle cells in both groups of diabetics may be responsible, at least in part, for the increased vascular contractility in diabetes mellitus.  相似文献   

18.
Increased levels of O-linked attachment of N-acetylglucosamine (O-GlcNAc) on nucleocytoplasmic proteins are implicated in the development of diabetic cardiomyopathy and are regulated by O-GlcNAc transferase (OGT) expression and its substrate UDP-GlcNAc. Therefore, the goal of this study was to determine whether the development of diabetes in the Zucker diabetic fatty (ZDF) rat, a model of Type 2 diabetes, results in defects in cardiomyocyte mechanical function and, if so, whether this is associated with increased levels of O-GlcNAc and increased OGT expression. Six-week-old ZDF rats were hyperinsulinemic but normoglycemic, and there were no differences in cardiomyocyte mechanical function, UDP-GlcNAc, O-GlcNAc, or OGT compared with age-matched lean control rats. Cardiomyocytes isolated from 22-wk-old hyperglycemic ZDF rats exhibited significantly impaired relaxation, compared with both age-matched lean control and 6-wk-old ZDF groups. There was also a significant increase in O-GlcNAc levels in high-molecular-mass proteins in the 22-wk-old ZDF group compared with age-matched lean control and 6-wk-old ZDF groups; this was associated with increased UDP-GlcNAc levels but not increased OGT expression. Surprisingly, there was a significant decrease in overall O-GlcNAc levels between 6 and 22 wk of age in lean, ZDF, and Sprague-Dawley rats that was associated with decreased OGT expression. These results support the notion that an increase in O-GlcNAc on specific proteins may contribute to impaired cardiomyocyte function in diabetes. However, this study also indicates that in the heart the level of O-GlcNAc on proteins appears to be differentially regulated by age and diabetes. hexosamine biosynthesis; protein O-glycosylation; O-linked N-acetylglucosamine transferase  相似文献   

19.
To assess the functional change in adenylyl cyclases (AC) associated with the diabetic state, we investigated AC-mediated relaxations and cAMP production in mesenteric arteries from rats with streptozotocin (STZ)-induced diabetes. The relaxations induced by the water-soluble forskolin (FSK) analog NKH477, which is a putative AC5 activator, but not by the beta-adrenoceptor agonist isoproterenol (Iso) and the AC activator FSK, were reduced in intact diabetic mesenteric artery. In diabetic rats, however, Iso-, FSK-, and NKH477-induced relaxations were attenuated in the presence of inhibitors of nitric oxide synthase and cyclooxygenase. To exclude the influence of phosphodiesterase (PDE), we also examined the relaxations induced by several AC activators in the presence of 3-isobutyl-1-methylxanthine (IBMX; a PDE inhibitor). Under these conditions, the relaxation induced by Iso was greatly impaired in STZ-diabetic rats. This Iso-induced relaxation was significantly attenuated by pretreatment with SQ-22536, an AC inhibitor, in mesenteric rings from age-matched controls but not in those from STZ-diabetic rats. Under the same conditions, the relaxations induced by FSK or NKH477 were impaired in STZ-diabetic rats. Neither FSK- nor A-23187 (a Ca2+ ionophore)-induced cAMP production was significantly different between diabetics and controls. However, cAMP production induced by Iso or NKH477 was significantly impaired in diabetic mesenteric arteries. Expression of mRNAs and proteins for AC5/6 was lower in diabetic mesenteric arteries than in controls. These results suggest that AC-mediated relaxation is impaired in the STZ-diabetic rat mesenteric artery, perhaps reflecting a reduction in AC5/6 activity.  相似文献   

20.
Individuals with hyperglycemia exhibit impaired exercise performance and functional vasodilatory response. Based on the importance of arachidonic acid (AA) metabolites in functional vasodilation and the increased thromboxane-to-prostacyclin ratio in diabetes, we hypothesized that chronic hyperglycemia in diabetes increases thromboxane-receptor (TP)-mediated vasoconstriction, resulting in an attenuated functional vasodilation. Three groups of lean Zucker rats (8 wk) were used to test the effects of chronic hyperglycemia on endothelial function: normal, streptozotocin (STZ; 70 mg/kg ip), and STZ + insulin (2 U/day). After 4 wk of treatment, spinotrapezius arcade arterioles were chosen for microcirculatory observation. Arteriolar diameter was measured following muscle stimulation and 10 microM AA application in the absence and presence of 1 microM SQ-29548 (TP antagonist). STZ rats exhibited significantly higher fasting glucose levels and attenuated functional and AA-induced dilation compared with normal animals. SQ-29548 improved the vasodilatory responses in STZ rats but had no effect in controls. Insulin treatment normalized both the glucose levels and the vasodilatory responses, and SQ-29548 treatment had no effect on functional or AA-mediated vasodilation in STZ + insulin animals. These results suggest that the impaired functional vasodilation in diabetic rats is due to hyperglycemia-mediated increases in TP-mediated vasoconstriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号