首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population levels of intestinal microflora and bile acid composition in the digestive tract were examined in rats fed bile acids to determine the relationships between gastrointestinal microflora and the host. The population level of Bacteroides was increased in the ceca of rats fed cholic acid or deoxycholic acid. In the ileum, the concentration of conjugated bile acid in rats fed cholesterol, cholic acid, hyodeoxycholic acid or lithocholic acid was higher than that in control rats, and was very low in ceca and feces of all the rats. The concentration of total free bile acid was much higher in the ceca than in the ilea of rats fed hyodeoxycholic acid or lithocholic acid. Cholic acid and deoxycholic acid were found in the ilea, ceca and feces of the cholic acid-fed rats. In the deoxycholic acid-fed rats, cholic acid was localized in the ileum. 7-Ketodeoxycholic acid was also found in the ceca of the cholic acid-fed rats. 12-Ketolithocholic acid was found in the feces of rats fed cholic acid or deoxycholic acid. 3-Ketocholanic acid was found in some samples from the lithocholic acid-fed rats. Therefore, some kinds of bile acids influence the population levels of gastrointestinal microflora and bile acid composition in the intestine.  相似文献   

2.
The extent of oxidoreduction of the 3 alpha-, 7 alpha- and 12 alpha-hydroxyl groups in bile acids during the enterohepatic circulation in man was studied with the use of [3 beta-3H]-labeled deoxycholic acid and cholic acid, [7 beta-3H]-labeled cholic acid, and [12 beta-3H]-labeled deoxycholic acid and cholic acid. Each [3H]-labeled bile acid was given per os to healthy volunteers, together with the corresponding [24-14C]-labeled bile acid. The rate of oxidoreduction was calculated from the decrease in the ratio between 3H and 14C in the respective bile acid isolated from duodenal contents collected at different time intervals after administration of the labeled bile acids. The mean fractional conversion rate was found to be 0.29 day-1 for the 3 alpha-hydroxyl group in deoxycholic acid (n = 2), 0.18 day-1 for the 12 alpha-hydroxyl group in deoxycholic acid (n = 6), 0.09 day-1 for the 3 alpha-hydroxyl group in cholic acid (n = 3), 0.05 day-1 for the 7 alpha-hydroxyl group in cholic acid (n = 2), and 0.03 day-1 for the 12 alpha-hydroxyl group in cholic acid (n = 2). The extent of oxidoreduction of the 12 alpha-hydroxyl group in [12 beta-3H]-labeled deoxycholic acid given to two patients operated with subtotal colectomy and ileostomy was markedly reduced (less than 20% of normal).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Although it has been assumed that the secondary bile acid deoxycholic acid is not rehydroxylated by the human liver, little direct evidence is available to support this assumption. To investigate the metabolism of deoxycholic acid in man, deoxycholic acid-(14)C was given intravenously to two patients with complete external bile fistulas. After hydrolysis of the bile salts and chromatographic separation of bile acids, more than 94% of the radioactivity was found in deoxycholic acid and the remainder was scattered in several small unidentified peaks, none of which was cholic acid. Approximately 85% of deoxycholate was excreted as glycine conjugates and 13% as taurine conjugates in this experiment. No detectable sulfate esters were found. These results indicate that the metabolism of deoxycholic acid in man involves only the reconjugation with glycine and taurine without rehydroxylation to cholic acid or sulfation.  相似文献   

4.
The ionization behavior of bile acids in different aqueous environments   总被引:1,自引:0,他引:1  
The ionization behavior of cholic acid, deoxycholic acid, and chenodeoxycholic acid in a variety of physiologically important molecular environments was studied using 13C NMR spectroscopy. The apparent pKa of the carboxyl group was determined from titration curves obtained from the dependence of the carboxyl carbon chemical shift on pH. Using 90% 13C isotopic substitution of the carboxyl carbon, a complete titration curve was obtained for cholate at a concentration below its critical micelle concentration and solubility limit in water. Incorporation of 12 mole % bile acid into mixed micelles with its taurine conjugate prevented precipitation of the unconjugated bile acid, and titration curves for cholic, deoxycholic, and chenodeoxycholic acids in the mixed micelles were obtained. The apparent pKa was also determined for 13C-enriched bile acids complexed with bovine serum albumin and in egg phosphatidylcholine vesicles. For monomers, micelles, and BSA complexes of all three bile acids and for deoxycholic and chenodeoxycholic acid in vesicles, one magnetic environment was observed. In contrast, two environments, both titratable, were detected for cholic acid in phosphatidylcholine vesicles. The apparent pKa's of the bile acids in the different environments ranged from 4.2 to 7.3. At pH 7.4, as monomers or bound to albumin, the bile acids were fully ionized, but when associated with phosphatidylcholine vesicles they were only partially ionized. In addition, aspects of the molecular motion and relative hydrophobicity of the bile acid carboxyl group in the environments studied were discerned from chemical shift, line-width, and lineshape data.  相似文献   

5.
When grown in the presence of bile acids, two strains of Clostridium limosum were found to contain significant amounts of NADP-dependent 7 alpha/7 beta-hydroxysteroid dehydrogenase and NAD-dependent 7 alpha-hydroxysteroid dehydrogenase which were active against conjugated and unconjugated bile acids. No measurable activity could be found when deoxycholic acid (3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid) was used as substrate. No 7 beta-hydroxysteroid dehydrogenase activity and only a trace of 7 alpha-hydroxysteroid dehydrogenase activity could be demonstrated when bile acid was deleted from the growth medium. If bile acid was added after the time of inoculation, the amounts of 7 alpha/7 beta-hydroxysteroid dehydrogenase were greatly reduced. Enzyme enhancement was blocked by addition of rifampicin. The 7 alpha/7 beta-hydroxysteroid dehydrogenase components had pH optima of approximately 10.5. Both the 7 alpha/7 beta-hydroxysteroid dehydrogenase activities were heat-labile, with the 7 beta-component being the more stable of the two. When ranked according to the level of enzymes induced, the order in increasing bile acid induction power on an equimolar scale (0.4 mM) was: 7-ketodeoxycholic acid, cholic acid, chenodeoxycholic acid, and deoxycholic acid. Both 7-ketolithocholic acid and ursodeoxycholic acid were ineffective as enzyme inducers. Optimal induction was achieved with high concentrations of cholic acid (5 mM) and a harvest time of 24 hr. Addition of ursodeoxycholic acid to medium containing optimal concentrations of deoxycholic acid suppressed enzyme induction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Hydroxylation of lithocholic, chenodeoxycholic, deoxycholic and cholic acids was studied in monolayers of rat hepatocytes cultured for 76 h. The majority of added lithocholic and chenodeoxycholic acids was metabolized to beta-muricholic acid (56-76%). A small part of these bile acids (9%), however, and a considerable amount of deoxycholic and cholic acids (21%) were converted into metabolites more polar than cholic acid in the first culture period. Formation of these compounds decreased during the last day of culture. Bile acids synthesized after addition of [4-14C]-cholesterol were almost entirely (97%) sulfated and/or conjugated, predominantly with taurine (54-66%), during culture. Sulfated bile acids were mainly composed of free bile acids. The ability of hepatocytes to sulfurylate bile acids declined with culture age. Thus, rat hepatocytes in primary monolayer culture are capable to sulfurylate bile acids and to hydroxylate trihydroxylated bile acids, suggesting formation of polyhydroxylated metabolites.  相似文献   

7.
Rabbit hepatocytes isolated after liver perfusion with collagenase were maintained in primary monolayer culture for periods up to 96 h. Bile acid synthesis and secretion was measured by capillary gas-liquid chromatography and by a rapid enzymatic-bioluminescence assay. As expected from the bile acid profile of rabbit gallbladder bile, cholic acid was the only bile acid synthesized in detectable amounts and was produced at a linear rate of 170 pmol/h per mg cell protein from 24 to 96 h in culture. Ketoconazole (20 microM) inhibited cholic acid synthesis and secretion by 78%, whereas the bile acids chenodeoxycholic acid (100 microM), deoxycholic acid (100 microM) or lithocholic acid (2 microM) had no effect. When rat hepatocytes were cultured under identical conditions, the rate of bile acid synthesis was found to be only 12 pmol/h per mg cell protein, a value in agreement with previous work. The large difference in rates of bile acid synthesis between rabbit and rat hepatocytes may be due to rapid loss of cytochrome P-450 from rat hepatocytes when placed in monolayer culture. Although reportedly active in cholesterol 7 alpha-hydroxylation, form 4 cytochrome P-450 levels in rabbit hepatocytes did not correlate with rates of bile acid synthesis.  相似文献   

8.
Abstract: The bile acid composition of bile obtained from the hepatopancreatic ducts of three species of sperm whales (Cetacea: Physeteridae) was investigated. Bile acids were isolated by adsorption chromatography and analyzed by sequential HPLC, SIMS, and GLC-MS. In each species the dominant bile acids were deoxycholic acid (a secondary bile acid formed by bacterial 7α-dehydroxylation of cholic acid), and chenodeoxycholic acid (a primary bile acid) which together composed more than 86% of biliary bile acids in all three species. In Physeter catodon (sperm whale) deoxycholic acid constituted 79%, and in Kogia breviceps (pygmy sperm whale) it was 61% of biliary bile acids. The sperm whale, which differs from other whales in having a remnant of a large intestine, is the second mammal identified to date in which deoxycholic acid is the predominant bile acid. The high proportion of deoxycholic acid indicates that in the Physeteridae, anaerobic fermentation occurs in its cecum, and that bile acids undergo enterohepatic cycling. Also found were minor proportions of cholic acid, as well as bacterial derivatives of chenodeoxycholic acid (ursodeoxycholic acid, lithocholic acid, and the 12β-epimer of allo-deoxycholic acid). Bile acids were conjugated with taurine in all species; however, in the sperm whale ( Physeter ) glycine conjugates were present in trace proportions. The bile acid hydroxylation pattern (12α- but not 6α-hydroxylation), lack of primary 5α- (allo) bile acids, and presence of glycine conjugated bile acids suggests the possibility that sperm whales originated from ancient artiodactyls.  相似文献   

9.
The mechanism of inhibition of aminopeptidase M by bile acids was analyzed by application of the specific velocity plot that was introduced by Baici [Eur. J. Biochem. 119, 9-14 (1981)]. Kinetic studies with three bile acids (cholic acid, deoxycholic acid, and chenodeoxycholic acid) and three substrates (Leu-Met, Leu-Gly, and Leu-pNA) showed that the inhibition constants Ki for the bile acids were appreciably different from each other, but that the Ki for each was not affected by the substrates used, being 0.89-1.03 mM for cholic acid, 0.42-0.66 mM for deoxycholic acid, and 0.24-0.31 mM for chenodeoxycholic acid. The values of the kinetic coefficient alpha [(apparent Ks in the presence of inhibitor)/Ks] for cholic acid with Leu-Met and Leu-Gly were 9.0 and 2.5, respectively. These values were very similar to those for chenodeoxycholic acid (7.0 and 2.7) but smaller than those for deoxycholic acid (21 and 11). The values of the other kinetic coefficient beta [(apparent kp in the presence of inhibitor)/kp] were 0 except in the case of the combinations of Leu-Gly with cholic acid (0.33) and Leu-Gly with chenodeoxycholic acid (0.13). On the basis of these kinetic parameters, the inhibitions by bile acids were classified into 4 types: competitive-noncompetitive linear mixed type (1 less than alpha less than infinity, beta = 0), noncompetitive-uncompetitive linear mixed type (0 less than alpha less than 1, beta = 0), pure noncompetitive type (alpha = 1, beta = 0), and hyperbolic mixed type (1 less than alpha less than infinity, 0 less than beta less than 1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Bile acid profiles of bile, urine, and feces obtained from a patient with cerebrotendinous xanthomatosis on the same day have been analyzed by gas-liquid chromatography-mass spectrometry after fractionation into groups by mode of conjugation by an ion-exchange chromatography. The predominant biliary bile acid was cholic acid conjugated with glycine and taurine. Lesser amounts of the amino acid conjugates of chenodeoxycholic acid, ursodeoxycholic acid, 7-ketodeoxycholic acid, allocholic acid, and deoxycholic acid, and of unconjugated norcholic acid and allonorcholic acid were also present in the bile. The major fecal bile acid was 7-epicholic acid. Relatively large amounts of bile acids were excreted in the urine. Unconjugated 7-epicholic acid, norcholic acid, allonorcholic acid, and cholic acid predominated. The bile acid profiles of the patient were different from those of normal subjects and should be useful for the diagnosis.  相似文献   

11.
Neomycin augments colon tumorigenesis in 1,2 - dimethylhydrazine treated rats fed polyunsaturated fat diet and decreases fecal cholic acid excretion, while it inhibits tumorigenesis with increased cholic acid and decreased deoxycholic acid excretions in rats fed high cholesterol diet. Participation of other fecal bile acids seems to be insignificant in relation to colon carcinogenesis.  相似文献   

12.
The aim of the present study was to examine the secretion of biliary components in rats during infusion of increasing doses of either deoxycholic acid, chenodeoxycholic acid or cholic acid and to test the hypothesis that biliary phospholipids may regulate the hepatic bile acid secretory capacity. Analysis of bile samples, collected every 10 min throughout the infusion period showed that there was an elevation of bile acid, phospholipid, cholesterol and alkaline-phosphodiesterase secretion, with all the bile acids, peaking and then gradually declining. Their secretory rates maximum differed and were inversely related to their detergent strength. However, the secretory rates maximum and total output of phospholipids and cholesterol were similar for all bile acids infused. The per cent contribution of phosphatidylcholine to total bile acid-dependent phospholipid secretion was reduced from 84% (in the pre-infusion period) to 59, 46 and 13% at the end of the cholic acid, chenodeoxycholic acid and deoxycholic acid infusions, respectively. This decrease in the per cent contribution of phosphatidylcholine was associated with an increase in the contribution of both sphingomyelin and phosphatidylethanolamine. The biliary phospholipid fatty acid pattern corroborated these changes in the phospholipid classes. Since sphingomyelin and phosphatidylethanolamine are major phospholipids in bile canalicular and other hepatocellular membranes, the marked increase in their secretion in bile during the infusion of high doses of bile acids may indicate solubilization of membrane phospholipids, resulting in membrane structural changes responsible for the reduced excretory function of the liver.  相似文献   

13.
Bile acid composition and content in the intestine and gallbladder of newborn and fetal rabbits were investigated. Unlike the circumstances in adult rabbits, the bile acids were conjugated with both taurine and glycine. The major bile acids of the fetus and newborn rabbit were cholic acid, chenodeoxycholic acid, and deoxycholic acid. This is different from the known bile acid composition of adult rabbits, in which deoxycholic acid is the major bile acid (> 80%). The proportion of chenodeoxycholic acid was higher in the fetal than in the newborn tissues. The total bile acid pool in the newborn was higher than in the fetus. In the fetus, large proportions of bile acids (60.9%) were associated with the gallbladder fraction, whereas in the newborn the bulk of the bile acids were found with the intestinal fraction (64.4%),  相似文献   

14.
K Kihira  T Hoshita 《Steroids》1985,46(2-3):767-774
Synthesis of the alpha,beta-unsaturated analogues of cholic acid, deoxycholic acid, chenodeoxycholic acid, and ursodeoxycholic acid is described. Each common bile acid was converted to the corresponding C22 aldehyde which was then converted to the delta 22 bile acid by Wittig reaction with methyl (triphenylphosphoranylidene)acetate. The synthetic unsaturated bile acids were characterized by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry.  相似文献   

15.
《FEBS letters》1987,213(2):411-414
A glucosyltransferase catalysing formation of bile acid glucosides was recently isolated from human liver microsomes. In order to investigate the potential occurrence of such bile acid derivatives in vivo, a method was devised for their isolation and purification from urine. Conditions were established with the aid of glucosides of radiolabelled, unconjugated glycine and taurine conjugated bile acids prepared enzymatically using human liver microsomes. Analysis by gas chromatography and mass spectrometry of methyl ester trimethylsilyl ether derivatives indicated the excretion of glucosides of nonamidated hyodeoxycholic, chenodeoxycholic, deoxycholic, ursodeoxycholic and cholic acids and of glycine and taurine conjugated chenodeoxycholic and cholic acids. Additional compounds were present giving mass spectral fragmentation patterns typical ofdi- and trihydroxy bile acid glycosides. Semiquantitative estimates indicated a total daily excretion of about 1 μmol.  相似文献   

16.
We previously reported that the 7 alpha-dehydroxylation of cholic acid appears to be carried out by a multi-step pathway in intestinal anaerobic bacteria both in vitro and in vivo. The pathway is hypothesized to involve an initial oxidation of the 3 alpha-hydroxy group and the introduction of a double bond at C4-C5 generating a 3-oxo-4-cholenoic bile acid intermediate. The loss of water generates a 3-oxo-4,6-choldienoic bile acid which is reduced (three steps) yielding deoxycholic acid. We synthesized, in radiolabel, the following putative bile acid intermediates of this pathway 7 alpha,12 alpha-dihydroxy-3-oxo-4-cholenoic acid, 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholanoic acid, 12 alpha-dihydroxy-3-oxo-4,6-choldienoic acid, and 12 alpha-hydroxy-3-oxo-4-cholenoic acid and showed that they could be converted to 3 alpha,12 alpha-dihydroxy-5 beta-cholanoic acid (deoxycholic acid) by whole cells or cell extracts of Eubacterium sp. VPI 12708. During studies of this pathway, we discovered the accumulation of two unidentified bile acid intermediates formed from cholic acid. These bile acids were purified by thin-layer chromatography and identified by gas-liquid chromatography-mass spectrometry as 12 alpha-hydroxy-3-oxo-5 alpha-cholanoic acid and 3 alpha,12 alpha-dihydroxy-5 alpha-cholanoic (allo-deoxycholic acid). Allo-deoxycholic acid was formed only in cell extracts prepared from bacteria induced by cholic acid, suggesting that their formation may be a branch of the cholic acid 7 alpha-dehydroxylation pathway in this bacterium.  相似文献   

17.
Summary We investigated the effect of bile acids either alone or in combination with lectins on immunoglobulin (Ig) production in vitro of rat mesenteric lymph node (MLN) lymphocytes to examine their immunoregulatory activities. Among free bile acids examined, chenodeoxycholic acid stimulated IgE production by MLN lymphocytes and inhibited IgA production at the concentration of 0.3 mM, whereas cholic and deoxycholic acids exerted the comparable effect at 3 mM. Among conjugated bile acids, deoxycholic acid derivatives stimulated IgE production more strongly than cholic acid derivatives. On the other hand, free and conjugated bile acids did not affect IgG production. The IgE production by MLN lymphocytes was stimulated by concanavalin A and inhibited by pokeweed mitogen, and the effect of phytohemmagglutinin and lipopolysaccharide was marginal. These lectins did not affect IgA and IgG production by the lymphocytes. In the presence of lectins, free bile acids affected IgE production at 0.03 mM. These results suggest the possibility that bile acid is a stimulant for food allergy.  相似文献   

18.
Bile acid 7alpha-dehydroxylation by intestinal bacteria, which converts cholic acid and chenodeoxycholic acid to deoxycholic acid (DCA) and lithocholic acid (LCA), respectively, is an important function in the human intestine. Clostridium scindens is one of the most important bacterial species for bile acid 7alpha-dehydroxylation because C. scindens has high levels of bile acid 7alpha-dehydroxylating activity. We quantified C. scindens and secondary bile acids, DCA and LCA, in fecal samples from 40 healthy Japanese and investigated their correlation. Moreover, we used terminal restriction fragment length polymorphism (T-RFLP) analysis to investigate the effect of fecal microbiota on secondary bile acid levels. There was no correlation between C. scindens and secondary bile acid in fecal samples. On the other hand, T-RFLP analysis demonstrated that fecal microbiota associated with high levels of DCA were different from those associated with low levels of DCA, and furthermore that fecal microbiota in the elderly (over 72 years) were significantly different from those in younger adults (under 55 years). These results suggest that intestinal microbiota have a stronger effect on DCA level than does the number of C. scindens cells.  相似文献   

19.
N Yamaga  K Adachi  K Shimizu  S Miyake  F Sumi  I Miyagawa  H Goto 《Steroids》1986,48(5-6):427-438
Bile acids in serum, urine and dialysate of 8 patients with renal failure in chronic hemodialysis were analyzed by gas chromatography and gas chromatography-mass spectrometry. The following results were obtained: 1. Lithocholic acid, 3 beta-hydroxy-5-cholen-24-oic acid, deoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, and cholic acid were identified in hemodialysate as well as in serum and urine. 2. The serum bile acid concentration of the patients was 2.78 +/- 0.57 micrograms/mL before hemodialysis and 1.34 +/- 0.48 micrograms/mL after a 5-h period hemodialysis with cuprophane membrane. The proportions of secondary bile acids in predialysis and postdialysis serum of patients were significantly higher than those of healthy subjects. 3. Two out of 8 patients excreted urine. But the amounts of bile acids in urine of the patients were very small compared to those of healthy subjects. 4. The amount of bile acids removed from blood by hemodialysis was 0.70 +/- 0.25 mg. In dialysate, cholic acid constituted a larger proportion of the total bile acids, and lithocholic acid a smaller proportion, when compared to those in urine of patients and healthy subjects.  相似文献   

20.
The effects of bile salts on the survival of lactobacilli were investigated using glycocholic acid, cholic acid and deoxycholic acid as model compounds and the bile salt hydrolase active Lactobacillus plantarum 80 (BSH+) and its BSH negative mutant. The detrimental effects of cholic acid, i.e. growth inhibition and cytotoxicity at a concentration of 1 and 5 mmol l−1, respectively, were considered to be due to the hydrophobic protonated form of the molecule, which brings about membrane damage. The conversion of glycocholic acid to cholic acid by the BSH active L. plantarum 80 caused a growth inhibition which was comparable with the inhibition observed in the broth supplemented with 1 mmol l−1 cholic acid. Deoxycholic acid caused toxicity through membrane damage when the compound was in solution. Its toxicity disappeared in the culture broth as the molecule precipitated. In case of cholic acid, the toxicity could be removed by buffering the solution at pH 7·0. It was calculated that at this pH most of the cholic acid molecules were ionized. The results led to the formulation of an extended hypothesis about the ecological significance of bile salt transformations. Primary deconjugation is carried out to counteract intracellular acidification. Yet, the deconjugated molecule can be harmful at moderately acidic pH-values. In this case, the BSH+ strains could effectively profit from their activity in case they are associated with 7α-dehydroxylating bacteria which dehydroxylate the deconjugated bile salts. The dehydroxylated molecule has a low solubility and precipitates at moderately acidic pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号