首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
THE CILIARY NECKLACE : A Ciliary Membrane Specialization   总被引:30,自引:19,他引:11       下载免费PDF全文
Cilia, primarily of the lamellibranch gill (Elliptio and Mytilus), have been examined in freeze-etch replicas. Without etching, cross fractures rarely reveal the 9 + 2 pattern, although suggestions of ninefold symmetry are present. In etched preparations, longitudinal fractures through the matrix show a triplet spoke alignment corresponding to the spoke periodicity seen in thin sections. Dynein rows can be visualized along the peripheral microtubules in some preparations. Fracture faces of the ciliary membrane are smooth with few membrane particles, except in the regions adjacent to the basal plate. In the transition region below the plate, a unique particle arrangement, the ciliary necklace, is found. In the Elliptio gill, on fracture face A the necklace is comprised of three well-defined rows or strands of membrane particles that encircle the ciliary shaft. The rows are scalloped and each scallop corresponds to a peripheral doublet microtubule. In thin sections at the level of these particles, a series of champagne-glass structures link the microtubular doublets to the ciliary membrane. The ciliary necklace and this "membrane-microtubule" complex may be involved in energy transduction or the timing of ciliary beat. Comparative studies show that these features are present in all somatic cilia examined including those of the ameboflagellate Tetramitus, sea urchin embryos, rat trachea, and nonmotile cilia of cultured chick embryo fibroblasts. The number of necklace strands differs with each species. The necklace has not been found in rat or sea urchin sperm.  相似文献   

2.
The connecting cilium of rat retinal rods was studied by freeze-fracture and thin-sectioning techniques. Transverse strands of intramembranous particles could be observed on fracture face B on the ciliary plasma membrane. The strands were essentially similar to those found at the transitional zone of motile cilia ("ciliary necklace"). The larger number of intramembranous particles obscured the pattern on fracture face A of the membrane. On longitudinal sections of the cilia, beads showing a periodicity similar to the necklace strands were observed. Each bead consisted of two structures apposed to both sides of the plasma membrane. Transverse sections of the cilia revealed radial Y-shaped structures that connected each ciliary doublet with the plasma membrane. Axial tubules, central sheath, radial spokes and dynein arms were missing in the connecting cilium. Comparing the fine structure of the retinal cilia with that of motile cilia it becomes evident that the connecting cilium is analogous in structure with the transitional zone of motile cilia. The present observations suggest that periodic membrane beads along the plasma membrane on thin sections correspond to strands of necklace particles as observed on freeze-fractured membranes. The arrangement of the particles in transverse strands is probably ensured by the radial connecting structures.  相似文献   

3.
Cilia in the canine retina were examined at 40, 46 and 50 days of gestation and at birth by scanning electron microscopy, transmission electron microscopy, and by the freeze-fracture technique. Cilia were similar in all age groups examined. Scanning electron micrographs showed them to be smooth-surfaced conical to tubular extensions arising from putative photoreceptor inner segments. Cilia when freeze-fractured contained variable numbers of circumferential rows of 10 nm P-face particles: these constitute the ciliary necklace. Transmission electron micrographs showed the ciliary membrane to contain electron-dense beads which corresponded to the ciliary necklace seen in freeze-fracture replicas. The ciliary necklace identified in the developing canine retina was similar to those found in other types of motile and sensory cilia.  相似文献   

4.
This essay records a voyage of discovery from the “cradle of cell biology” to the present, focused on the biology of the oldest known cell organelle, the cilium. In the “romper room” of cilia and microtubule (MT) biology, the sliding MT hypothesis of ciliary motility was born. From the “summer of love,” students and colleagues joined the journey to test switch-point mechanisms of motility. In the new century, interest in nonmotile (primary) cilia, never lost from the cradle, was rekindled, leading to discoveries relating ciliogenesis to autophagy and hypotheses of how molecules cross ciliary necklace barriers for cell signaling.  相似文献   

5.
Cilia and associated structures on the gill lamellae on the ctenidum of Chaetoderma nitidulum were studied. The gill cilia are very long and have a whip-like narrow portion distally, where only three microtubule doublets continue to the distal tip. In the transition zone between the cilium and the centriolar triplet section of the basal body there is a dense plate, an aggregation of granules and a ciliary necklace with four strands. Further down there is a short cross-striated basal foot and two conical cross-striated ciliary rootlets. The first rootlet is flattened and directed forward. It connects distally with the basal feet of other adjacent cilia. The second rootlet is rounded in cross-section and vertically directed. The epithelial structures of Chaetoderma show similarities with other Mollusca. We found no structural characters that could support the current hypothesis of a close relationship of Xenoturbella to the Mollusca.  相似文献   

6.
The fine structure of the cilium was examined by freeze-fracture-etch studies. In the interior of the transitional region, three types of plate structures were clearly observed. While the terminal plate contained fine fibrillar linkers suspending the central core plates from its peripheral doublet microtubules, two other types of plates had no suspending linkers. At the upper level of transitional region, one of the central microtubules elongated deeper than the other in the space surrounded by ring structure. Axosome-like structure was not observed in our replicas. Central vesicle of the basal body was also suspended by fine fibrillar linkers from peripheral triplets. Though membrane particles of ciliary necklace were recognized on protoplasmic and external fracture faces, and the external surface, particle arrays were not observed on protoplasmic surface. Instead, Y-shaped, cross bridges, one end of which attached to the doublet microtubules, merged in the circular ridge structure at opposite ends. This circular ridge structure at the necklace region may play a role as an anchoring site of both membrane particles of the necklace and cross bridges from peripheral doublet microtubules.  相似文献   

7.
Primary cilia are ubiquitous mammalian cellular substructures implicated in an ever-increasing number of regulatory pathways. The well-established ciliary hypothesis states that physical bending of the cilium (for example, due to fluid flow) initiates signaling cascades, yet the mechanical properties of the cilium remain incompletely measured, resulting in confusion regarding the biological significance of flow-induced ciliary mechanotransduction. In this work we measure the mechanical properties of a primary cilium by using an optical trap to induce resonant oscillation of the structure. Our data indicate 1) the primary cilium is not a simple cantilevered beam; 2) the base of the cilium may be modeled as a nonlinear rotatory spring, with the linear spring constant k of the cilium base calculated to be (4.6 ± 0.62) × 10−12 N/rad and nonlinear spring constant α to be (−1 ± 0.34) × 10−10 N/rad2; and 3) the ciliary base may be an essential regulator of mechanotransduction signaling. Our method is also particularly suited to measure mechanical properties of nodal cilia, stereocilia, and motile cilia—anatomically similar structures with very different physiological functions.  相似文献   

8.
Basal bodies comprise nine symmetric triplet microtubules that anchor forces produced by the asymmetric beat pattern of motile cilia. The ciliopathy protein Poc1 stabilizes basal bodies through an unknown mechanism. In poc1∆ cells, electron tomography reveals subtle defects in the organization of intertriplet linkers (A-C linkers) that connect adjacent triplet microtubules. Complete triplet microtubules are lost preferentially near the posterior face of the basal body. Basal bodies that are missing triplets likely remain competent to assemble new basal bodies with nine triplet microtubules, suggesting that the mother basal body microtubule structure does not template the daughter. Our data indicate that Poc1 stabilizes basal body triplet microtubules through linkers between neighboring triplets. Without this stabilization, specific triplet microtubules within the basal body are more susceptible to loss, probably due to force distribution within the basal body during ciliary beating. This work provides insights into how the ciliopathy protein Poc1 maintains basal body integrity.  相似文献   

9.
In a correlated thin sectioning and freeze-fracturing study, we have examined species belonging to the orders of the ascidian class: Stolidobranchiata (Botryllus schlosseri, Botrylloides leachi, Molgula socialis, Styela plicata), Phlebobranchiata (Ascidiella aspersa, Phallusia ingeria, Ciona intestinalis) and Aplousobranchiata (Clavelina lepadiformis). Though the branchial basket varies in the complexity and filtration efficiency in the three orders, the ciliated epithelia aroand the stigmata contain a common pattern of organization; seven rows of flattened cells, each bearing a single row of long cilia flanked by a single row of microvilli. All the species examined possess ciliary specializations represented by: (a) bridges connecting doublets number 5 and 6 as well as 9.1 and 2; (b) dense material lying between the above mentioned axonemal doublets (5-6 and 1-2) and the ciliary membrane, sometimes in the shape of longitudinal strands or often as lines of dots; (c) a fuzzy coat protruding from the ciliary membrane, consisting of tufts or scattered filaments; (d) intramembrane particles (IMPs) associated with the P-face of the membrane, often arranged in clusters and orderly alignments related to the anderlying axonemal doublets; these IMPs decorate the opposite sides of each cilium facing the adjacent cilia forming the ciliary rows of adjacent cells and are absent on the lateral sides. The stigmatal cilia propel water through the stigmata and their effective strokes follow a line at right angles to the row of cilia in each cell. The usual direction of the effective stroke is toward doublets 5-6. It is possible, therefore, to refer to structure in relation to the ciliary beat cycle. The importance of these specializations is unknown, but the structures appear to vary in the different species. A correlation between the richness of the specializations and the complexity of the branchial basket was not evidenced. It was suggested that the ciliary specializations relate to the peculiar organization of the stigmatal margin and that all are involved in the regulation of the ciliary activity.  相似文献   

10.
Axenic late log phase cultures of Tetrahymena pyriformis DN-B3 are deciliated by treatment with dibucaine. Deciliation occurs first at the anterior end of the cell and then progresses posteriorly. Concomitantly, all mature mucocysts are induced to discharge by the drug. The exact point of scission of each cilium is found to be a very localized region, between two specialized membrane arrays: the ciliary necklace and the ciliary patches, situated at the base of the cilium. Isolated cilia retain the patches, while the necklaces remain with the deciliated bodies. The cell membrane seals over the stubs. The new ciliary membrane then grows out above the necklace without the patches, which do not generally appear for several hours. Membrane renewal is therefore asynchronous, with bulk growth preceding the formation of specialized intramembrane particle arrays. During regrowth, the cilia also first return at the anterior end of the cell. This suggests that underlying gradients, perhaps related to Ca2+, are significant in the deciliation process.  相似文献   

11.
The sliding microtubule model of ciliary motility predicts that cumulative local displacement (Δl) of doublet microtubules relative to one another occurs only in bent regions of the axoneme. We have now tested this prediction by using the radial spokes which join the A subfiber of each doublet to the central sheath as markers of microtubule alignment to measure sliding displacements directly. Gill cilia from the mussel Elliptio complanatus have radial spokes lying in groups of three which repeat at 860 Å along the A subfiber. The spokes are aligned with the two rows of projections along each of the central microtubules that form the central sheath. The projections repeat at 143 Å and form a vernier with the radial spokes in the precise ratio of 6 projection repeats to 1 spoke group repeat. In straight regions of the axoneme, either proximal or distal to a bend, the relative position of spoke groups between any two doublets remains constant for the length of that region. However, in bent regions, the position of spoke groups changes systematically so that Δl (doublet 1 vs. 5) can be seen to accumulate at a maximum of 122 Å per successive 860-Å spoke repeat. Local contraction of microtubules is absent. In straight regions of the axoneme, the radial spokes lie in either of two basic configurations: (a) the parallel configuration where spokes 1–3 of each group are normal (90°) to subfiber A, and (b) the tilted spoke 3 configuration where spoke 3 forms an angle (θ) of 9–20°. Since considerable sliding of doublets relative to the central sheath (~650 Å) has usually occurred in these regions, the spokes must be considered, functionally, as detached from the sheath projections. In bent regions of the axoneme, two additional spoke configurations occur where all three spokes of each group are tilted to a maximum of ± 33° from normal. Since the spoke angles do not lie on radii through the center of bend curvature, and Δl accumulates in the bend, the spokes must be considered as attached to the sheath when bending occurs. The observed radial spoke configurations strongly imply that there is a precise cycle of spoke detachment-reattachment to the central sheath which we conclude forms the main part of the mechanism converting active interdoublet sliding into local bending.  相似文献   

12.
13.
W L Dentler 《Tissue & cell》1981,13(2):197-208
The cilia in ctenophore swimming plates are organized into long rows and the cilia within each of the rows are connected to one another by interciliary bridges. The interciliary bridges form a type of intracellular junction and are periodically spaced at 15 nm intervals along the long axis of a cilium. The bridges bind adjacent cilia together even after dissolution of the ciliary membrane by non-ionic detergent. Interciliary bridges are attached to the compartmenting lamellae, which are paracrystalline structures composed of spherical particles which are periodically attached to the outer doublet microtubules at the sites to which the microtubule-membrane bridges are bound. It is proposed that the compartmenting lamellae are modifications of the ciliary microtubule-membrane bridge found in other eukaryotic cilia and that it is associated with a junctional complex that binds adjacent cilia together in swimming plates.  相似文献   

14.
A primary cilium was frequently observed in the endocrine alpha, beta and delta cells, as well as in the excretory duct cells of the pancreas of normal mice and rats. The characteristic components of the cilium including the basal body, axoneme (shaft), and terminal part were clearly recognizable. The basal body or distal centriole surrounded by Golgi vesicles was perpendicularly oriented to the proximal centriole, and a dense striated band was seen filling the gap between them. The microtubules of the basal body consisted of nine peripheral triplets exhibiting a 9 + 0 pattern, an appearance similar to that of the proximal centriole. Rootlets, basal feet and alar sheets associated with the basal body were occasionally seen. The axoneme usually consisted of a 9 + 0 pattern of microtubule doublets, but other irregular patterns of 7 + 2, 7 + 3, and 8 + 1 were also seen. The microtubules in the terminal part of the cilium became fewer in number and had no peculiar arrangement. The cilium of the endocrine cells always projected into the intercellular canaliculus and was covered by the ciliary sheath, and occasionally, double cilia were visualized in the vicinity of beta cells. In the excretory duct cells, the cilium showed similar features, but it was slightly longer and always projected into the dense secretory content of duct lumen. On the other hand, no primary cilium was ever observed in the acinar cells of mouse and rat pancreas. In conclusion, the present study describes the morphology of primary cilia and its associated components in the endocrine and excretory duct cells of the pancreas of mice and rats. The findings suggest that the primary cilium should be considered as a constant intracellular organelle though its function and significance remain speculative.  相似文献   

15.
Cilia are organelles found on most eukaryotic cells, where they serve important functions in motility, sensory reception, and signaling. Recent advances in electron tomography have facilitated a number of ultrastructural studies of ciliary components that have significantly improved our knowledge of cilium architecture. These studies have produced nanometer-resolution structures of axonemal dynein complexes, microtubule doublets and triplets, basal bodies, radial spokes, and nexin complexes. In addition to these electron tomography studies, several recently published crystal structures provide insights into the architecture and mechanism of dynein as well as the centriolar protein SAS-6, important for establishing the 9-fold symmetry of centrioles. Ciliary assembly requires intraflagellar transport (IFT), a process that moves macromolecules between the tip of the cilium and the cell body. IFT relies on a large 20-subunit protein complex that is thought to mediate the contacts between ciliary motor and cargo proteins. Structural investigations of IFT complexes are starting to emerge, including the first three-dimensional models of IFT material in situ, revealing how IFT particles organize into larger train-like arrays, and the high-resolution structure of the IFT25/27 subcomplex. In this review, we cover recent advances in the structural and mechanistic understanding of ciliary components and IFT complexes.  相似文献   

16.
The morphology of the transition zone between the terminal plate of the basal body and the 9 + 2 region of the somatic (non-oral) cilium has been examined in Paramecium tetraurelia. Freeze-fracture and thin- section techniques disclosed both membrane specializations and various internal structural linkages. Freeze-fracture material revealed sets of particles interrupting the unit membrane. The more distal of these form plaquelike arrays while the proximal set of particles forms the ciliary "necklace." The plaque regions correspond to anionic sites on the outer membrane surface as revealed by binding of polycationic ferritin. Both the plaque particles and the necklace particles appear to be in contact with outer doublet microtubules via a complex of connecting structures. In the interior of the transition zone an axosomal plate supports an axosome surrounded by a ring of lightly packed material. Only one of the two central tubules of the axoneme reaches and penetrates the axosome. Below the axosomal plate four rings, each approx. 20 nm wide, connect adjacent outer doublets. An intermediate plate lies proximal to these rings, and a terminal plate marks the proximal boundary of this zone. Nine transitional fibers extend from the region of the terminal plate to the plasmalemma. The observations described above have been used to construct a three-dimensional model of the transition region of "wild-type" Paramecium somatic cilia. It is anticipated that this model will be useful in future studies concerning possible function of transition-zone specializations, since Paramecium may be examined in both normal and reversed ciliary beating modes, and since mutants incapable of reverse beating are available.  相似文献   

17.
Summary Transmission electron microscopy was used to study the development of the flagellar base and the flagellar necklace during spermatogenesis in a moth (Ephestia kuehniella Z.). Until mid-pachytene, two basal body pairs without flagella occur per cell. The basal bodies, which contain a cartwheel complex, give rise to four flagella in late prophase I. The cartwheel complex appears to be involved in the nucleation of the central pair of axonemal microtubules. In spermatids, there is one basal body; this is attached to a flagellum. At this stage, the nine microtubular triplets of the basal body do not terminate at the same proximal level. The juxtanuclear triplets are shifted distally relative to the triplets distant from the nuclear envelope. Transition fibrils and a flagellar necklace are formed at the onset of axoneme elongation. The flagellar necklace includes Y-shaped elements that connect the flagellar membrane and the axonemal doublets. In spindle-containing spermatocytes, the flagellar necklace is no longer detectable. During spermatid differentiation, the transition fibrils move distally along the axoneme and a prominent middle piece appears. Our observations and those in the literature indicate certain trends in sperm structure. In sperms with a short middle piece, we expect the presence of a flagellar necklace. The distal movement of the transition fibrils or equivalent structures is prevented by the presence of radial linkers between the flagellar membrane and the axonemal doublets. On the other hand, the absence of a flagellar necklace at the initiation of spermiogenesis enables the formation of a long middle piece. Thus, in spermatozoa possessing an extended middle piece, a flagellar necklace may be missing.  相似文献   

18.
Summary In Eufolliculina uhligi and other folliculinid ciliates, a territory has been identified that differs ultrastructurally from other areas of the cell, and that is especially sensitive to mechanical stimuli. This territory is located around the anterior oral apparatus of the loricate trophont and posterior to the membranellar spiral of the swarmer. Each cilium in this territory is closely apposed to a small membrane-covered pin that is supported by transverse microtubules of the cilium. In front of the pin, the base of the cilium bulges out; the ciliary membrane is interconnected with the axoneme by filamentous material. Freeze-fractured cilia show a large rectangular particle array at the site of the basal swelling. Only scattered particles have been observed in the pin membrane. It is suggested that the cilium and the pin act as a unit, which has therefore been named the ciliumpin-complex. Comparison with ciliary organelles of unicellular and multicellular organisms indicates that, because of their polar organization, the complexes are involved in the transduction of oriented, presumably mechanical, stimuli.  相似文献   

19.
THE FINE STRUCTURE OF THE CILIA FROM CTENOPHORE SWIMMING-PLATES   总被引:1,自引:10,他引:1       下载免费PDF全文
The ctenophore swimming-plate has been examined with the electron microscope. It has been recognized as an association of long cilia in tight hexagonal packing. One of the directions of the hexagonal packing is parallel to the long edge of the swimming-plate and is perpendicular to the direction of the ciliary beat. All the cilia in the swimming-plate are identically oriented. The effective beat in the movement of the swimming-plate is directed towards the aboral pole of the animal, and this is also the side of the unpaired peripheral filament in all the cilia. The direction of the ciliary beat is fixed in relation to the position of the filaments of the cilia. The swimming-plate cilium differs from other types of cilia and flagella in having a filament arrangement that can be described as 9 + 3 as opposed to the conventional 9 + 2 pattern. The central filaments appear in a group of two "tubular" filaments and an associated compact filament. The compact filament might have a supporting function. It has been called "midfilament." Two of the peripheral nine filaments (Fig. 1, Nos. 3 and 8) are joined to the ciliary membrane by means of slender lamellae, which divide the cilium into two unequal compartments. These lamellae have been called "compartmenting lamellae." Some observations of the arrangement of the compartmenting lamelae indicate that they function by cementing the cilia together in lateral rows. The cilia of the rows meet at a short distance from each other, leaving a gap of 30 A only. The meeting points are close to the termini of the compartmenting ridges. An electron-dense substance is sometimes seen bridging the gap. Some irregularities are noted with regard to the arrangement of the compartmenting lamellae particularly at the peripheral rows of cilia. In many cilia in these rows there are small vesicles beneath the ciliary membrane.  相似文献   

20.
Summary In ependymal cells of the mouse the neck region of all cilia examined by means of transmission electron microscopy exhibited rows of electron-dense spines. These structures correspond to the ciliary necklace reported from freeze-etch studies, a structure presumed to serve as an energy-regulating system in motile cilia. Send offprint requests to: Institute of Neuropathology, Free University Berlin, Hindenburgdamm 30, 1 Berlin 45  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号