首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As a step towards an automated and operator-free ion channel measurement platform we have previously demonstrated a solution formulation for artificial lipid bilayers that enabled the indefinite storage and shipping of frozen bilayer precursors. In this work, the solutions were deposited by hand. Here, we have adapted pin tools to deposit the bilayer precursor solutions onto multi-element arrays, a popular method for microarray solution deposition. The pin tools have enabled the deposited volume to be applied highly repeatably and controllably, resulting in reduction of bilayer formation times to <1 h. The pin tools are also compatible with computerized motion control platforms, enabling automated and high throughput production. We discuss these results and the prospects of this technology to produce high density bilayer arrays for high throughput measurement of ion channels incorporated into artificial bilayers.  相似文献   

2.
Measurements of ion channels are important for scientific, sensing and pharmaceutical applications. Reconstitution of ion channels into lipid vesicles and planar lipid bilayers for measurement at the single molecule level is a laborious and slow process incompatible with the high throughput methods and equipment used for sensing and drug discovery. A recently published method of lipid bilayer formation mechanically combines lipid monolayers self-assembled at the interfaces of aqueous and apolar phases. We have expanded on this method by vertically orienting these phases and using gravity as the driving force to combine the monolayers. As this method only requires fluid dispensation, it is trivially integrated with high throughput automated liquid-handling robotics. In a proof-of-concept demonstration, we created over 2200 lipid bilayers in 3h. We show single molecule measurements of technologically and physiologically relevant ion channels incorporated into lipid bilayers formed with this method.  相似文献   

3.
A novel, simple and label-free multianalyte immunoassay system is presented here by integrating arrayed electrodes on a silicon chip via MEMS. The chip is consisted of six Au disk electrodes, an Au counter electrode and an Ag/AgCl reference electrode. Semi-insulating poly(o-phenylenediamine) (PoPD) was utilized to co-polymerize and immobilize antibodies at the arrayed Au electrodes, and wider linear detection range was obtained than those prepared with completely insulating PoPD. Electrochemical cyclic voltammogram (CV), AC impedance spectroscopy, AFM and fluorescence microscopy were employed to characterize the system. The arrayed electrodes offered exact control of deposition position via electrochemical operation, allowing selectively immobilization of different antibodies at desired positions on a single chip. Specific recognition of antibody (Ab) to corresponding antigen (An) was quantitatively monitored by cyclic voltammograms in the presence of electrochemical redox probe, ferrocene methanol. The proposed immunoassay chips showed sensitive response to three liver fibrosis markers, hyaluronic acid (HA), collagen type IV (IV-C) and lamin (LN) at ng/mL level simultaneously and specifically in a tiny amount of volume, usually 50 μL. The results obtained via chips were well consistent with those obtained by commercial radio immunoassays (RIA).  相似文献   

4.
Protein purification of recombinant proteins constitutes a significant cost of biomanufacturing and various efforts have been directed at developing more efficient purification methods. We describe a protein purification scheme wherein Ralstonia eutropha is used to produce its own "affinity matrix," thereby eliminating the need for external chromatographic purification steps. This approach is based on the specific interaction of phasin proteins with granules of the intracellular polymer polyhydroxybutyrate (PHB). By creating in-frame fusions of phasins and green fluorescent protein (GFP) as a model protein, we demonstrated that GFP can be efficiently sequestered to the surface of PHB granules. In a second step, we generated a phasin-intein-GFP fusion, wherein the self-cleaving intein can be activated by the addition of thiols. This construct allowed for the controlled binding and release of essentially pure GFP in a single separation step. Finally, pure, active beta-galactosidase was obtained in a single step using the above described method.  相似文献   

5.
Metal ions affect ion channels either by blocking the current or by modifying the gating. In the present review we analyse the effects on the gating of voltage-gated channels. We show that the effects can be understood in terms of three main mechanisms. Mechanism A assumes screening of fixed surface charges. Mechanism B assumes binding to fixed charges and an associated electrostatic modification of the voltage sensor. Mechanism C assumes binding and an associated non electrostatic modification of the gating. To quantify the non-electrostatic effect we introduced a slowing factor, A. A fourth mechanism (D) is binding to the pore with a consequent pore block, and could be a special case of Mechanisms B or C. A further classification considers whether the metal ion affects a single site or multiple sites. Analysing the properties of these mechanisms and the vast number of studies of metal ion effects on different voltage-gated on channels we conclude that group 2 ions mainly affect channels by classical screening (a version of Mechanism A). The transition metals and the Zn group ions mainly bind to the channel and electrostatically modify the gating (Mechanism B), causing larger shifts of the steady-state parameters than the group 2 ions, but also different shifts of activation and deactivation curves. The lanthanides mainly bind to the channel and both electrostatically and non-electrostatically modify the gating (Mechanisms B and C). With the exception of the ether-à-go-go-like channels, most channel types show remarkably similar ion-specific sensitivities.  相似文献   

6.
Mechanical contraction of a cardiac muscle cell is related to the electric activation of the plasma membrane. As in the neuron cell, inflow of the Na(+) ions across the cell membrane causes electric activation with amplitude of about 100 mV. However, differently from the nerve cell, the action potential lasts a few hundred milliseconds before repolarization. Moreover, several types of K(+) channel such as the classical inward rectifier K(+) channel, the voltage dependent channel and others are responsible for the formation of the action potential. The mechanism of opening and closing the K(+) channels is not thoroughly elucidated. In the present paper, a four state Markov model with one open and three closed states is studied to obtain open and close probabilities of the gates constituting a specific ionic channel. The probability density functions of durations of opening and closing of the channel are also discussed.  相似文献   

7.
The simulated system consisted of a fatty acid bilayer membrane dividing two electrolyte layers each containing ions, and a channel composed of linked 15-crown-5 ether rings. The Na+ and F ions in the aqueous electrolyte layers were too large to enter the channel, but the Li+ ions entered and were transported. Conditions that optimised the passive, electric-field-induced transport of Li+ ions through the channel were investigated. It was calculated and rationalised that the higher the numerical value of the electrostatic charge on the oxygen atoms of the crown ether rings, the more easily does the channel convey the Li+ ions.  相似文献   

8.
Predict potential drug targets from the ion channel proteins based on SVM   总被引:1,自引:0,他引:1  
The identification of molecular targets is a critical step in the drug discovery and development process. Ion channel proteins represent highly attractive drug targets implicated in a diverse range of disorders, in particular in the cardiovascular and central nervous systems. Due to the limits of experimental technique and low-throughput nature of patch-clamp electrophysiology, they remain a target class waiting to be exploited. In our study, we combined three types of protein features, primary sequence, secondary structure and subcellular localization to predict potential drug targets from ion channel proteins applying classical support vector machine (SVM) method. In addition, our prediction comprised two stages. In stage 1, we predicted ion channel target proteins based on whole-genome target protein characteristics. Firstly, we performed feature selection by Mann-Whitney U test, then made predictions to identify potential ion channel targets by SVM and designed a new evaluating indicator Q to prioritize results. In stage 2, we made a prediction based on known ion channel target protein characteristics. Genetic algorithm was used to select features and SVM was used to predict ion channel targets. Then, we integrated results of two stages, and found that five ion channel proteins appeared in both prediction results including CGMP-gated cation channel beta subunit and Gamma-aminobutyric acid receptor subunit alpha-5, etc., and four of which were relative to some nerve diseases. It suggests that these five proteins are potential targets for drug discovery and our prediction strategies are effective.  相似文献   

9.
10.
A simple device for the application of ion-selective liquid membrane electrodes to biochemistry is described. K+- and Ca2+-selective membranes were sealed on polyvinyl chloride (PVC) tubing and inserted into the side wall of a Plexiglas reaction vessel, enabling simultaneous measurements of K+ and Ca2+. The vessel also permits the simultaneous detection of changes in pH and oxygen and is predisposed to work under a controlled atmosphere. The system is particularly suitable for the measurement of fast changes in ion activities, since the stirring system described has a mixing time below 0.1 s. The 95% response times of the ion-selective electrodes and of the oxygen electrode were below 0.5 s. The volume of the reaction vessel is 0.5–1.0 ml.  相似文献   

11.
12.
The design of chemically well-defined, machinable surfaces containing neuroactive molecules offers potential for fundamental neuroscience and clinical neural engineering applications. Here we report the assembly and characterization of silicon platforms containing a tethered form of muscimol. Muscimol, an analog of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), is a potent agonist at postsynaptic GABA(A) and GABA(C) receptors. Surfaces were assembled using covalent avidin conjugation to silanized silicon followed by high-affinity avidin-biotin binding of a biotinylated derivative of muscimol (muscimol-biotin). Contact angle measurements, ellipsometry, and X-ray photoelectron spectroscopy (XPS) were conducted to characterize the wettability, thickness, and chemical composition of progressively deposited surface layers. The data demonstrate successful incorporation of a neurotransmitter analog as part of a layered, silicon-based structure possessing robust and specific biomolecular composition. These findings represent a step toward the design of platforms for applications involving control and modulation of neural signaling.  相似文献   

13.
14.
15.
Ion channels open and close in a stochastic fashion, following the laws of probability. However, distinct from tossing a coin or a die, the probability of finding the channel closed or open is not a fixed number but can be modified (i.e., we can cheat) by some external stimulus, such as the voltage. Single-channel records can be obtained using the appropriate electrophysiological technique (e.g., patch clamp), and from these records the open probability and the channel conductance can be calculated. Gathering these parameters from a membrane containing many channels is not straightforward, as the macroscopic current I = iNP(o), where i is the single-channel current, N the number of channels, and P(o) the probability of finding the channel open, cannot be split into its individual components. In this tutorial, using the probabilistic nature of ion channels, we discuss in detail how i, N, and P(o max) (the maximum open probability) can be obtained using fluctuation (nonstationary noise) analysis (Sigworth FJ. G Gen Physiol 307: 97-129, 1980). We also analyze the sources of possible artifacts in the determination of i and N, such as channel rundown, inadequate filtering, and limited resolution of digital data acquisition by use of a simulation computer program (available at www.cecs.cl).  相似文献   

16.
Z Qi  M Sokabe  K Donowaki    H Ishida 《Biophysical journal》1999,76(2):631-641
Ion conduction properties of a de novo synthesized channel, formed from cyclic octa-peptides consisting of four alternate L-alanine (Ala) and N'-acylated 3-aminobenzoic acid (Aba) moieties, were studied in bilayer membranes. The single-channel conductance was 9 pS in symmetrical 500 mM KCl. The channel favored permeation of cations over anions with a permeability ratio (PCl-/PK+) of 0.15. The selectivity sequence among monovalent cations based on permeability ratio (PX+/PK+) fell into an order: NH4+(1.4) > Cs+(1. 1) >/= K+(1.0) > Na+(0.4) >> Li+(0). The conductance-activity relationship of the channel in K+ solutions followed simple Michaelis-Menten kinetics with a half-maximal saturating activity of 8 mM and a maximal conductance of 9 pS. The permeability ratio PNa+/PK+ remained constant ( approximately 0.40) under biionic concentrations from 10 to 500 mM. These results suggests that the channel is a one-ion channel. The pore diameter probed by a set of organic cations was approximately 6 A. The single-channel current was blocked by Ca2+ in a dose-dependent manner that followed a single-site titration curve with a voltage-dependent dissociation constant of 0.6 mM at 100 mV. The electric distance of the binding site for Ca2+ was 0.07 from both entrances of the channel, indicating the presence of two symmetrical binding sites in each vicinity of the channel entrance. Correlations between conduction properties and structural aspects of the channel are discussed in terms of a three-barrier and two-binding-site (3B2S) model of Eyring rate theory. All available structural information supported an idea that the channel was formed from a tail-to-tail associated dimer of the molecule, the pore of which was lined with hydrophobic acyl chains. This is the first report to have made a systematic analysis of ion permeation through a hydrophobic pore.  相似文献   

17.
TPK1 (formerly KCO1) is the founding member of the family of two-pore domain K(+) channels in Arabidopsis (Arabidopsis thaliana), which originally was described following expression in Sf9 insect cells as a Ca(2+)- and voltage-dependent outwardly rectifying plasma membrane K(+) channel. In plants, this channel has been shown by green fluorescent protein fusion to localize to the vacuolar membrane, which led to speculations that the TPK1 gene product would be a component of the nonselective, Ca(2+) and voltage-dependent slow-vacuolar (SV) cation channel found in many plants species. Using yeast (Saccharomyces cerevisiae) as an expression system for TPK1, we show functional expression of the channel in the vacuolar membrane. In isolated vacuoles of yeast yvc1 disruption mutants, the TPK1 gene product shows ion channel activity with some characteristics very similar to the SV-type channel. The open channel conductance of TPK1 in symmetrically 100 mM KCl is slightly asymmetric with roughly 40 pS at positive membrane voltages and 75 pS at negative voltages. Similar to the SV-type channel, TPK1 is activated by cytosolic Ca(2+), requiring micromolar concentration for activation. However, in contrast to the SV-type channel, TPK1 exhibits strong selectivity for K(+) over Na(+), and its activity turned out to be independent of the membrane voltage over the range of +/-80 mV. Our data clearly demonstrate that TPK1 is a voltage-independent, Ca(2+)-activated, K(+)-selective ion channel in the vacuolar membrane that does not mediate SV-type ionic currents.  相似文献   

18.
To address the throughput restrictions of classical patch clamp electrophysiology, Essen Instruments has developed a plate-based electrophysiology measurement platform. The instrument is an integrated platform that consists of computer-controlled fluid handling, recording electronics, and processing tools capable of voltage clamp whole-cell recordings from thousands of individual cells per day. To establish a recording, the system uses a planar, multiwell substrate (a PatchPlate). The system effectively positions 1 cell into a hole separating 2 fluid compartments in each well of the substrate. Voltage control and current recordings from the cell membrane are made subsequent to gaining access to the cell interior by applying a permeabilizing agent to the intracellular side. Based on the multiwell design of the PatchPlate, voltage clamp recordings of up to 384 individual cells can be made in minutes and are comparable to measurements made using traditional electrophysiology techniques. An integrated pipetting system allows for up to 2 additions of modulation agents. Typical throughput, measurement fidelity, stability, and comparative pharmacology of a recombinant voltage-dependent sodium channel (hNav1.3) and a voltage-gated potassium channel (hKv1.5) exogenously expressed in CHO cells are presented. The IonWorks HT device can be used in biophysical and pharmacological profiling of ion channels in an environment compatible with high-capacity screening.  相似文献   

19.
20.
The chloride selective channel from Torpedo electroplax, ClC-0, is the prototype of a large gene family of chloride channels that behave as functional dimers, with channel currents exhibiting two non-zero conductance levels. Each pore has the same conductance and is controlled by a subgate, and these have seemingly identical fast gating kinetics. However, in addition to the two subgates there is a single slower 'supergate' which simultaneously affects both channels. In the present paper, we consider a six state Markov model that is compatible with these observations and develop approximations as well as exact results for relevant properties of groupings of openings, known as bursts. Calculations with kinetic parameter values typical of ClC-0 suggest that even simple approximations can be quite accurate. Small deviations from the assumption of independence within the model lead to marked changes in certain predicted burst properties. This suggests that analysis of these properties may be helpful in assessing independence/non-independence of gating in this type of channel. Based on simulations of models of both independent and non-independent gating, tests using binomial distributions can lead to false conclusions in each situation. This is made more problematic by the difficulty of selecting an appropriate critical time in defining a burst empirically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号