首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A redox protein gene (PH0178) with high sequence homology to a glutaredoxin from Pyrococcus furiosus and a thioredoxin reductase homologue gene (PH1426) were found in the genome sequence of Pyrococcus horikoshii. These two genes were cloned and the corresponding expressed proteins were characterized. The redox protein from PH0178 had strong thioredoxin-like activity, but no glutaredoxin activity. The protein from PH1426 had some reductase activity against thioredoxin from Escherichia coli as well as the redox protein (PH0178). The protein from PH1426 was a typical, homodimeric flavoprotein. These results indicate that the redox protein (PH0178) is not a glutaredoxin but, rather, a new protein-disulfide oxidoreductase that is involved in a thioredoxin-like system with thioredoxin reductase (PH1426) in P. horikoshii. The redox protein and thioredoxin reductase retained their full activities for over 1h at 100 degrees C. The redox potential of the redox protein was similar to that of thioredoxin from E. coli and lower than that of glutathione. Site-directed mutagenesis studies revealed that the active site of the redox protein corresponds to a CPYC sequence, located in the middle of the sequence.  相似文献   

3.
4.
The hyperthermophilic archaeon, Pyrococcus furiosus, grows optimally near 100 °C by fermenting sugars to acetate, carbon dioxide and molecular hydrogen as the major end products. The organism has recently been exploited to produce biofuels using a temperature-dependent metabolic switch using genes from microorganisms that grow near 70 °C. However, little is known about its metabolism at the lower temperatures. We show here that P. furiosus produces acetoin (3-hydroxybutanone) as a major product at temperatures below 80 °C. A novel type of acetolactate synthase (ALS), which is involved in branched-chain amino acid biosynthesis, is responsible and deletion of the als gene abolishes acetoin production. Accordingly, deletion of als in a strain of P. furiosus containing a novel pathway for ethanol production significantly improved the yield of ethanol. These results also demonstrate that P. furiosus is a potential platform for the biological production of acetoin at temperatures in the 70–80 °C range.  相似文献   

5.
A hyperthermophilic, anaerobic archaeon was isolated from hydrothermal fluid samples obtained at the Okinawa Trough vents in the NE Pacific Ocean, at a depth of 1395 m. The strain is obligately heterotrophic, and utilizes complex proteinaceous media (peptone, tryptone, or yeast extract), or a 21-amino-acid mixture supplemented with vitamins, as growth substrates. Sulfur greatly enhances growth. The cells are irregular cocci with a tuft of flagella, growing optimally at 98°C (maximum growth temperature 102°C), but capable of prolonged survival at 105°C. Optimum growth was at pH 7 (range 5–8) and NaCl concentration 2.4% (range 1%–5%). Tryptophan was required for growth, in contrast to the closely related strains Pyrococcus furiosus and P. abyssi. Thin sections of the cell, viewed by transmission electron microscopy, revealed a periplasmic space similar in appearance to the envelope of P. furiosus. The predominant cell membrane component was tetraether lipid, with minor amounts of diether lipids. Treatment of the cells by mild osmotic shock released an extract that contained a Zn2+-dependent alkaline phosphatase. Phylogenetic analysis of the sequences encoding 16S rRNA and glutamate dehydrogenase places the isolate with certainty within the genus Pyrococcus although there is relatively low DNA–DNA hybridization (<63%) with described species of this genus. Based on the reported results, we propose a new species, to be named Pyrococcus horikoshii sp. nov. Received: December 10, 1997 / Accepted: February 4, 1998  相似文献   

6.
Abstract: The structure determination of the glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus has been completed at 2.2 Å resolution. The structure has been compared with the glutamate dehydrogenases from the mesophiles Clostridium symbiosum, Escherichia coli and Neurospora crassa . This comparison has revealed that the hyperthermophilic enzyme contains a striking series of networks of ion-pairs which are formed by regions of the protein which contain a high density of charged residues. Such regions are not found in the mesophilic enzymes and the number and extent of ion-pair formation is much more limited. The ion-pair networks are clustered at both inter domain and inter subunit interfaces and may well represent a major stabilising feature associated with the adaptation of enzymes to extreme temperatures.  相似文献   

7.
8.
NAD-dependent glutamate dehydrogenase (l-glutamate:NAD oxidoreductase, deaminating; EC 1.4.1.2) was purified to homogeneity from a crude extract of the continental hyperthermophilic archaeon Pyrobaculum islandicum by two successive Red Sepharose CL-4B affinity chromatographies. The enzyme is the most thermostable NAD-dependent dehydrogenase found to date; the activity was not lost after incubation at 100°C for 2 h. The enzyme activity increased linearly with temperature, and the maximum was observed at ca. 90°C. The enzyme has a molecular mass of about 220 kDa and consists of six subunits with identical molecular masses of 36 kDa. The enzyme required NAD as a coenzyme for l-glutamate deamination and was different from the NADP-dependent glutamate dehydrogenase from other hyperthermophiles. The Km values for NAD, l-glutamate, NADH, 2-oxoglutarate, and ammonia were 0.025, 0.17, 0.0050, 0.066, and 9.7 mM, respectively. The enzyme activity was significantly increased by the addition of denaturants such as guanidine hydrochloride and some water-miscible organic solvents such as acetonitrile and tetrahydrofuran. When fluorescence of the enzyme was measured in the presence of guanidine hydrochloride, a significant emission spectrum change and a shift in the maximum were observed but not in the presence of urea. These results indicate that this hyperthermophilic enzyme may have great potential in applications to biosensor and bioreactor processes.During the past decade, many anaerobic hyperthermophiles growing at a temperature near or above the boiling point of water have been isolated from marine and continental volcanic environments (1). The interest in hyperthermophiles has been rapidly expanding. In particular, interest is focused on understanding the adaptation mechanisms that allow the metabolism to function and the biomolecules, such as protein, enzyme, and DNA, to remain intact at extremely high temperature. Most hyperthermophiles belong to Archaea, the third domain of life (22), and evolutionary attention has been paid to their biomolecules because they may be the most slowly evolving or primitive group of microorganisms yet discovered. In addition, enzymes from the hyperthermophiles have a large biotechnological potential (2, 6). Of the enzymes from hyperthermophiles, glutamate dehydrogenase (GluDH) (EC 1.4.1.4., glutamate:NADP oxidoreductase) is one of the enzymes for which the most abundant information concerning enzymological properties and the relationships between structure and function has been obtained. Extremely thermostable NADP-dependent GluDHs have been purified from Pyrococcus furiosus (5, 18, 20), Pyrococcus woesei (18), Thermococcus litoralis (14, 19), and Thermococcus profundus (11). The gdhA gene of Pyrococcus furiosus (8, 9) has been cloned and sequenced, and the structural difference between the GluDHs of Pyrococcus furiosus, T. litoralis, and Clostridium symbiosum has been investigated to elucidate protein thermostability (3). In addition, a key role of the ion pair networks in maintaining the structure stability of Pyrococcus furiosus GluDH at an extremely high temperature has been indicated (24). However, information about hyperthermostable GluDH is limited so far to that regarding marine hyperthermophilic species of the order Thermococcales such as Pyrococcus and Thermococcus.In the course of investigating GluDH distribution in hyperthermophilic archaea, we found the activity of NAD-dependent GluDH (EC 1.4.1.2) in the cell extract of a continental hyperthermophilic archaeon, Pyrobaculum islandicum. This is the first example of the occurrence of NAD-dependent GluDH in anaerobic hyperthermophilic archaea. In general, the physiological function of NAD-dependent GluDH is known to be different from that of NADP-dependent GluDH (17). In addition, the NAD-dependent GluDH may be expected to be more preferable for application than the NADP-dependent enzyme, because NAD and NADH are much cheaper than NADP and NADPH, respectively (4, 23). Thus, we purified the enzyme from P. islandicum for characterization. We describe here the characteristics of this GluDH with emphasis on its high stability in some denaturants and organic solvents.  相似文献   

9.
10.
The Tk-ptp gene encoding a protein tyrosine phosphatase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 was cloned and biochemical characteristics of the recombinant protein (Tk-PTP) were examined. A series of mutants, D63A (replacing Asp-63 with Ala), C93S, C93A, R99K, and R99M, were also constructed and analyzed. Two unique features were found. First, the Tk-PTP showed the phosphatase activity not only toward phosphotyrosine but also toward phosphoserine. Second, the conserved Asp-63, which corresponds to a critical residue among other known PTPs, was not essential for catalysis. Cys-93 and Arg-99 residues played a crucial role in substrate binding and catalysis. To know a specific substrate for Tk-PTP, C93S mutant was used to trap substrate proteins from cell extract of KOD1. Phenylalanyl-tRNA synthetase subunit beta-chain, one of the gene products of RNA terminal phosphate cyclase operon and phosphomannomutase, was identified, suggesting that they functioned for phosphate donation.  相似文献   

11.
Abstract

The hyperthermophilic bacterium Thermotoga maritima contains an amylolytic gene cluster with two adjacent α-glucosidase genes, aglB and aglA. We have now identified a similar pair of α-glucosidase genes on a 5,451 bp fragment of T. neapolitana genomic DNA. Like in T. maritima, aglA of T. neapolitana is located downstream of aglB. The deduced AglB primary structure allows its assignment to glycoside hydrolase family 13 (GHF13), whereas AglA belongs to GHF4. The aglB gene of T. neapolitana and the corresponding gene from T. maritima were expressed in E. coli, and the recombinant enzymes were characterized. Both enzymes hydrolyzed cyclomaltodextrins and linear maltooligosaccharides to yield glucose and maltose. Evidence from the hydrolysis of non-natural oligosaccharides and the pseudo-tetrasaccharide acarbose suggests that linear malto-oligosaccharides are progressively degraded by T. neapolitana and T. maritima AglB from the reducing end, which is highly uncommon for α-glucosidases. AglB, in contrast to the cofactor-dependent (NAD+, Mn2+) α-glucosidase AglA, does not cleave maltose. The recent elucidation of the crystal structure of T. miritima AglA indicates that AglA and AglB employ different catalytic mechanisms for glycosidic bond cleavage. Possible reasons for the presence of two α-glucosidase genes in the same amylolytic gene cluster of Thermotoga species are discussed.  相似文献   

12.
13.
We have constructed a physical map of the approximately 1.7-Mb genome of the hyperthermophilic archaeon Pyrobaculum aerophilum. Derived from a 12× coverage genomic fosmid library with an average insert size of 36 Kb, the map consists of a single circular contig of 96 overlapping fosmid clones with 211 markers ordered along them. One hundred of the sequence markers have strong similarities to known genes. Many overlaps were also checked using restriction fingerprint analysis. This map is an important step in the elucidation of the sequence of the entire genome of Pyrobaculum aerophilum. To this end we have determined more than 95% of the genome with 15000 random sequences. Each sequence has been screened against the public sequence databases to identify similarities to known genes. We report here a list of the 474 putative genes we have identified. Received: 18 October 1996 / Accepted: 30 October 1996  相似文献   

14.
A PCR protocol was used to identify and sequence a gene encoding a DNA ligase from Thermococcus fumicolans (Tfu). The recombinant enzyme, expressed in Escherichia coli BL21(DE3) pLysS, was purified to homogeneity and characterized. The optimum temperature and pH of Tfu DNA ligase were 65 degrees C and 7.0, respectively. The optimum concentration of MgCl2, which is indispensable for the enzyme activity, was 2 mM. We showed that Tfu DNA ligase displayed nick joining and blunt-end ligation activity using either ATP or NAD+, as a cofactor. In addition, our results would suggest that Tfu DNA ligase is likely to use the same catalytic residues with the two cofactors. The ability for DNA ligases, to use either ATP or NAD+, as a cofactor, appears to be specific of DNA ligases from Thermococcales, an order of hyperthermophilic microorganisms that belongs to the euryarchaeotal branch of the archaea domain.  相似文献   

15.
Malate dehydrogenases (MDHs) play crucial roles in the physiological processes of plant growth and development. In this study, 13 and 25 MDH genes were identified from Gossypium raimondii and Gossypium hirsutum, respectively. Using these and 13 previously reported Gossypium arboretum MDH genes, a comparative molecular analysis between identified MDH genes from G. raimondii, G. hirsutum, and G. arboretum was performed. Based on multiple sequence alignments, cotton MDHs were divided into five subgroups: mitochondrial MDH, peroxisomal MDH, plastidial MDH, chloroplastic MDH and cytoplasmic MDH. Almost all of the MDHs within the same subgroup shared similar gene structure, amino acid sequence, and conserved motifs in their functional domains. An analysis of chromosomal localization suggested that segmental duplication played a major role in the expansion of cotton MDH gene families. Additionally, a selective pressure analysis indicated that purifying selection acted as a vital force in the evolution of MDH gene families in cotton. Meanwhile, an expression analysis showed the distinct expression profiles of GhMDHs in different vegetative tissues and at different fiber developmental stages, suggesting the functional diversification of these genes in cotton growth and fiber development. Finally, a promoter analysis indicated redundant but typical cis-regulatory elements for the potential functions and stress activity of many MDH genes. This study provides fundamental information for a better understanding of cotton MDH gene families and aids in functional analyses of the MDH genes in cotton fiber development.  相似文献   

16.
A hyperthermophilic -1,4 endoglucanase was identified in Pyrococcus horikoshii, a hyperthermophilic archaeon. In order to clarify the function of the protein in detail, structural and catalytic site studies were performed using protein engineering. By removing some of the C-terminal sequence of the ORF of the endoglucanase (PH1171), two types of recombinant proteins were expressed from one ORF, using Escherichia coli. One exhibited endoglucanase activity, and the other did not. An SD-like sequence was identified in the ORF of the endoglucanase. By removing the SD-like sequence without changing the amino acid sequence of the endoglucanase, one recombinant endoglucanase was prepared effectively from E. coli. From the analysis of the N- and C-terminal regions of the ORF, this endoglucanase appears to be a secreted and membrane-binding enzyme of P. horikoshii. A mutation analysis of the endoglucanase, using the synthetic substrate, indicated that Glu342 is a candidate for the active center and plays a critical role in the activity of the enzyme. Additional catalytic amino acid residues were not found. These results indicate that the catalytic residue of the enzyme is different from that of typical family 5 endoglucanase, even though it has a high homology to the endoglucanase from Acidothermus celluloliticus. The activity of the enzyme, using carboxy methylcellulose and crystalline cellulose as the substrates, was increased, but not for a synthetic low-molecular substrate when a carbohydrate-binding module of chitinase from P. furiosus was added to the C-terminal region.  相似文献   

17.
The gene encoding a thermostable iron-containing alcohol dehydrogenase from Thermococcus Strain ES1 (ES1 ADH) was cloned, sequenced and expressed in Escherichia coli. The recombinant and native ES1 ADHs were purified using multistep column chromatography under anaerobic conditions. Both enzymes appeared to be homotetramers with a subunit size of 45 ± 1 kDa as revealed by SDS-PAGE, which was close to the calculated value (44.8 kDa). The recombinant ADH contained 1.0 ± 0.1 g-atom iron per subunit. Both enzymes were sensitive to oxygen with a half-life upon exposure to air of about 4 min. The recombinant enzyme exhibited a specific activity of 105 ± 2 U mg−1, which was very similar to that of the native enzyme (110 ± 3 U mg−1). The optimal pH-values for both enzymes for ethanol oxidation and acetaldehyde reduction were 10.4 and 7.0, respectively. Both enzymes also showed similar temperature-dependent activities, and catalyzed the oxidation of primary alcohols, but there was no activity towards methanol and secondary alcohols. Kinetic parameters of the enzymes showed lower K m-values for acetaldehyde and NADPH and higher K m-values for ethanol and NADP+. It is concluded that the gene encoding ES1 ADH was expressed successfully in E. coli. This is the first report of a fully active recombinant version of an iron-containing ADH from a hyperthermophile.  相似文献   

18.
利用简并引物和RT-PCR方法从金针菇(Flammulina velutipes)幼嫩子实体中克隆获得FvGDH全长cDNA序列.构建入门载体pGWC-FvGDH,利用Gateway克隆技术的LR反应构建原核重组表达载体pDESTl7-FvGDH,转化大肠杆菌BL21(DE3).通过IPTG法诱导表达融合蛋白并进行表达条件优化.SDS-PAGE蛋白电泳分析表明,融合蛋白相对分子质量约为53 kD,与预测的一致.最佳表达条件为温度30℃、IPTG浓度0.4mmol/L、诱导4 h.融合蛋白表达量较高,实现了FvGDH的高效表达,并利用Western blotting对其特异性进行鉴定.FvGDH基因高效原核表达体系的成功建立,为进一步研究FvGDH的酶促动力学奠定了基础.  相似文献   

19.
20.
Abstract A Pyrococcus woesei Eco RI DNA fragment (3400 bp) harbouring the gene fus for elongation factor 2 (EF-2) was cloned and almost completely sequenced. Unlike Methanococcus vannielii (which displays the 'str operon'-like fus and tuf gene context, 5'- rps 12- rps 7- fus-tuf -3⊃ and similar to Sulfolobus acidocaldarius and Desulfurococcus mobilis , the Pyrococcus fus gene (732 codons) is unlinked to the rps and tuf genes, and is immediately followed (57 bp intergenic spacing) by an ORF of 106 codons. Both ORFs are preceded by potential archaeal promoters located 52 bp (for fus ) and 37 bp (for ORF106) upstream of the putative start codons. The Pyrococcus EF-2(G) equivalent factor is somewhat closer to the eukaryal than to the bacterial homolog, and also shares with the former the C-terminal sequence required for ADP ribosylation of EF-2 by Diphtheria toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号