首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on cell division traditionally focus on the mechanisms of chromosome segregation and cytokinesis, yet we know comparatively little about how organelles segregate. Analysis of organelle partitioning in asymmetrically dividing cells has provided insights into the mechanisms through which cells control organelle distribution. Interestingly, these studies have revealed that segregation mechanisms frequently link organelle distribution to organelle growth and formation. Furthermore, in many cases, cells use organelles, such as the endoplasmic reticulum and P granules, as vectors for the segregation of information. Together, these emerging data suggest that the coordination between organelle growth, division, and segregation plays an important role in the control of cell fate inheritance, cellular aging, and rejuvenation, i.e., the resetting of age in immortal lineages.  相似文献   

2.
BACKGROUND: The asymmetric division of cells and unequal allocation of cell contents is essential for correct development. This process of active segregation is poorly understood but in many instances has been shown to depend on the cytoskeleton. Motor proteins moving along actin filaments and microtubules are logical candidates to provide the motive force for asymmetric sorting of cell contents. The role of myosins in such processes has been suggested, but few examples of their involvement are known. RESULTS: Analysis of a Caenorhabditis elegans class VI myosin deletion mutant reveals a role for this motor protein in the segregation of cell components during spermatogenesis. Mutant spermatocytes cannot efficiently deliver mitochondria and endoplasmic reticulum/Golgi-derived fibrous-body membranous organelle complexes to budding spermatids, and fail to remove actin filaments and microtubules from the spermatids. The segregation defects are not due to a global sorting failure as nuclear inheritance is unaffected. CONCLUSIONS: C. elegans myosin VI has an important role in the unequal partitioning of both organelles and cytoskeletal components, a novel role for this class of motor protein.  相似文献   

3.
Class V and VI myosins, two of the six known classes of actin-based motor genes expressed in vertebrate brain (Class I, II, V, VI, IX, and XV), have been suggested to be organelle motors. In this report, the neuronal expression and subcellular localization of chicken brain myosin V and myosin VI is examined. Both myosins are expressed in brain during embryogenesis. In cultured dorsal root ganglion (DRG) neurons, immunolocalization of myosin V and myosin VI revealed a similar distribution for these two myosins. Both are present within cell bodies, neurites and growth cones. Both of these myosins exhibit punctate labeling patterns that are found in the same subcellular region as microtubules in growth cone central domains. In peripheral growth cone domains, where individual puncta are more readily resolved, we observe a similar number of myosin V and myosin VI puncta. However, less than 20% of myosin V and myosin VI puncta colocalize with each other in the peripheral domains. After live cell extraction, punctate staining of myosin V and myosin VI is reduced in peripheral domains. However, we do not detect such changes in the central domains, suggesting that these myosins are associated with cytoskeletal/organelle structures. In peripheral growth cone domains myosin VI exhibits a higher extractability than myosin V. This difference between myosin V and VI was also found in a biochemical growth cone particle preparation from brain, suggesting that a significant portion of these two motors has a distinct subcellular distribution.  相似文献   

4.
5.
Moving mitochondria: establishing distribution of an essential organelle   总被引:4,自引:0,他引:4  
Mitochondria form a dynamic network responsible for energy production, calcium homeostasis and cell signaling. Appropriate distribution of the mitochondrial network contributes to organelle function and is essential for cell survival. Highly polarized cells, including neurons and budding yeast, are particularly sensitive to defects in mitochondrial movement and have emerged as model systems for studying mechanisms that regulate organelle distribution. Mitochondria in multicellular eukaryotes move along microtubule tracks. Actin, the primary cytoskeletal component used for transport in yeast, has more subtle functions in other organisms. Kinesin, dynein and myosin isoforms drive motor-based movement along cytoskeletal tracks. Milton and syntabulin have recently been identified as potential organelle-specific adaptor molecules for microtubule-based motors. Miro, a conserved GTPase, may function with Milton to regulate transport. In yeast, Mmr1p and Ypt11p, a Rab GTPase, are implicated in myosin V-based mitochondrial movement. These potential adaptors could regulate motor activity and therefore determine individual organelle movements. Anchoring of stationary mitochondria also contributes to organelle retention at specific sites in the cell. Together, movement and anchoring ultimately determine mitochondrial distribution throughout the cell.  相似文献   

6.
Rab GTPases and myosin motors in organelle motility   总被引:10,自引:4,他引:6  
The actin cytoskeleton is essential to ensure the proper location of, and communication between, intracellular organelles. Some actin-based myosin motors have been implicated in this process, particularly members of the class V myosins. We discuss here the emerging role of the Ras-like GTPases of the Rab family as regulators of myosin function in organelle transport. Evidence from yeast secretory vesicles and mitochondria, and mammalian melanosomes and endosomes suggests that Rab GTPases are crucial components of the myosin organelle receptor machinery. Better understood is the case of the melanosome where Rab27a recruits a specific effector called melanophilin, which in turn binds myosin Va. The presence of a linker protein between a Rab and a myosin may represent a general mechanism. We argue that Rabs are ideally suited to perform this role as they are exquisite organelle markers. Furthermore, the molecular switch property of Rabs may enable them to regulate the timing of the myosin association with the target organelle.  相似文献   

7.
How is adaptability generated in a system composed of interacting cellular machineries, each with a separate and functionally critical job to perform? The machinery for organelle inheritance is precisely one such system, requiring coordination between robust and ancient cellular modules, including the cell cycle, cytoskeleton, and organelle biogenesis/identity. Budding yeasts have emerged as powerful models to study these processes, which are critical for cellular survival, propagation, and differentiation, as organelles must compete for access to myosin V motors that travel along polarized actin cables to vectorially deliver bound cargo to the bud. Under the direction of the cell cycle, myosin V motors are recruited to organelles by specific interactions between their carboxyl-terminal globular tail domains and organelle-specific receptors. We used comparative genomics, phylogenetics, and secondary structure modeling to characterize the evolutionary history of these organelle-specific receptors. We find that while some receptors are retained widely across the animals and fungi, others are limited primarily to the Saccharomycetaceae family of budding yeast, with the emergent pattern of a conserved biogenic and inheritance factor often paired with an evolutionarily novel inheritance adaptor. We propose an evolutionary model whereby the emergence of myosin V-based organelle inheritance has utilized mechanisms of paralogy, mutation, and the appearance of pliable evolutionarily novel adaptor proteins. Our findings suggest an overarching evolutionary mechanism for how diverse cargoes compete for a single myosin V motor in organelle transport and detail one system's solution to obtaining evolutionary adaptability amongst constrained cellular modules.  相似文献   

8.
Centrins are calcium binding proteins involved in cell division in eukaryotes. Previously, we have shown that depletion of centrin1 in Trypanosoma brucei (T. brucei) displayed arrested organelle segregation resulting in loss of cytokinesis. In this study we analyzed the role of T. brucei centrin2 (TbCen2) and T. brucei 3 (TbCen3) in the early events of T. brucei procyclic cell cycle. Both the immunofluorescence assay and electron microscopy showed that TbCen2 and 3-deficient cells were enlarged in size with duplicated basal bodies, multinuclei and new flagella that are detached along the length of the cell body. In both TbCen2 and TbCen3 depleted cells segregation of the organelles i.e. basal bodies, kinetoplast and nucleus was disrupted. Further analysis of the cells with defective organelle segregation identified three different sub configurations of organelle mis-segregations (Type 1–3). In addition, in majority of the TbCen2 depleted cells and in nearly half of the TbCen3 depleted cells, the kinetoplasts were enlarged and undivided. The abnormal segregations ultimately led to aborted cytokinesis and hence affected growth in these cells. Therefore, both centrin2 and 3 are involved in organelle segregation similar to centrin1 as was previously observed. In addition, we identified their role in kinetoplast division which may be also linked to overall mis-segregation.  相似文献   

9.
We developed population genetic theory for organelle genes, using an infinite alleles model appropriate for molecular genetic data, and considering the effects of mutation and random drift on the frequencies of selectively neutral alleles. The effects of maternal inheritance and vegetative segregation of organelle genes are dealt with by defining new effective gene numbers, and substituting these for 2N(e) in classical theory of nuclear genes for diploid organisms. We define three different effective gene numbers. The most general is N(lambda), defined as a function of population size, number of organelle genomes per cell, and proportions of genes contributed by male and female gametes to the zygote. In many organisms, vegetative segregation of organelle genomes and intracellular random drift of organelle gene frequencies combine to produce a predominance of homoplasmic cells within individuals in the population. Then, the effective number of organelle genes is N(eo), a simple function of the numbers of males and females and of the maternal and paternal contributions to the zygote. Finally, when the paternal contribution is very small, N( eo) is closely approximated by the number of females, N( f). Then if the sex ratio is 1, the mean time to fixation or loss of new mutations is approximately two times longer for nuclear genes than for organelle genes, and gene diversity is approximately four times greater. The difference between nuclear and organelle genes disappears or is reversed in animals in which males have large harems. The differences between nuclear and organelle gene behavior caused by maternal inheritance and vegetative segregation are generally small and may be overshadowed by differences in mutation rates to neutral alleles. For monoecious organisms, the effective number of organelle genes is approximately equal to the total population size N. We also show that a population can be effectively subdivided for organelle genes at migration rates which result in panmixis for nuclear genes, especially if males migrate more than females.  相似文献   

10.
Swiss mouse 3T3 fibroblasts grown on a solid substrate in the presence of 10% serum exhibit cell movement, organelle transport, and cytokinesis. When the serum concentration in the culture medium is decreased to 0.2% for 48 h the serum-deprived cells virtually stop locomoting, spread, decreased organelle transport, and exhibit extensive arrays of stress fibers that are visible with video-enhanced differential interference contrast microscopy and that also incorporate fluorescent analogs of actin and conventional myosin (myosin II). The stress fibers form in a constitutive manner at the cytoplasm-membrane interface, transport toward the nucleus, and then disappear. The rate of transport of these fibers is quite heterogeneous with average rates in the range of 10-20 microns/h. When serum-deprived cells are stimulated with mitogens such as 10% serum or 10 nM thrombin, many of the stress fibers immediately begin to shorten, suggesting a contraction. The rate of shortening is approximately two orders of magnitude slower than that of unloaded smooth muscle cells. The fiber shortening is often accompanied by retraction of the edges of the cell and continues for at least the 1st hour post-stimulation.  相似文献   

11.
Tunneling nanotube (TNT)-like structures are intercellular membranous bridges that mediate the transfer of various cellular components including endocytic organelles. To gain further insight into the magnitude and mechanism of organelle transfer, we performed quantitative studies on the exchange of fluorescently labeled endocytic structures between normal rat kidney (NRK) cells. This revealed a linear increase in both the number of cells receiving organelles and the amount of transferred organelles per cell over time. The intercellular transfer of organelles was unidirectional, independent of extracellular diffusion, and sensitive to shearing force. In addition, during a block of endocytosis, a significant amount of transfer sustained. Fluorescence microscopy revealed TNT-like bridges between NRK cells containing F-actin but no microtubules. Depolymerization of F-actin led to the disappearance of TNT and a strong inhibition of organelle exchange. Partial ATP depletion did not affect the number of TNT but strongly reduced organelle transfer. Interestingly, the myosin II specific inhibitor S-(−)-blebbistatin strongly induced both organelle transfer and the number of TNT, while the general myosin inhibitor 2,3-butanedione monoxime induced the number of TNT but significantly inhibited transfer. Taken together, our data indicate a frequent and continuous exchange of endocytic organelles between cells via TNT by an actomyosin-dependent mechanism.  相似文献   

12.
Macrophage pseudopodia that surround objects during phagocytosis contain a meshwork of actin filaments and exclude organelles. Between these pseudopodia at the base of developing phagosomes, the organelle exclusion ceases, and lysosomes enter the cell periphery to fuse with the phagosomes. Macrophages also extend hyaline pseudopodia on the surface of nylon wool fibers and secrete lysosomal enzymes into the extracellular medium instead of into phagosomes. To analyze biochemically these concurrent alterations in cytoplasmic architecture, we allowed rabbit lung macrophages to spread on nylon wool fibers and then subjected the adherent cells to shear. This procedure caused the selective release of β-glucoronidase into the extracellular medium and yielded two fractions, cell bodies and isolated pseudopod blebs resembling podosomes, which are plasma-lemma-bounded sacs of cortical cytoplasm. Cytoplasmic extracts of the cell bodies eluted from nylon fibers contained two-thirds less actin-binding protein and myosin, and approximately 20 percent less actin and two-thirds of the other two proteins were accounted for in podosomes. The alterations in protein composition correlated with assays of myosin-associated EDTA-activated adenosine triphosphatase activity, and with a diminution in the capacity of extracts of nylon wool fiber-treated cell bodies to gel, a property dependent on the interaction between actin-binding protein and F-actin. However, the capacity of the remaining actin in cell bodies to polymerize did not change. We propose that actin-binding protein and myosin are concentrated in the cell cortex and particularly in pseudopodia where prominent gelation and syneresis of actin occur. Actin in the regions from which actin-binding protein and myosin are displaced disaggregates without depolymerizing, permitting lysosomes to gain access to the plasmalemma. Translocation of contractile proteins could therefore account for the concomitant differences in organelle exclusion that characterize phagocytosis.  相似文献   

13.
Myosin II and V are important for the generation and segregation of subcellular compartments. We observed that vesicular myosin II and V were associated with the protein scaffolding of a common subset of vesicles by density sedimentation, electron microscopy, and immunofluorescence. Solubilization of either myosin II or V was caused by polyphosphates with the following efficacy at 10 mM: for myosin II ATP-Mg(2+) = ATP = AMP-PNP (5'-adenylyl imidodiphosphate) > pyrophosphate = tripolyphosphate > tetrapolyphosphate = ADP > cAMP = Mg(2+); and for myosin V pyrophosphate = tripolyphosphate > ATP-Mg(2+) = ATP = AMP-PNP > ADP = tetrapolyphosphate > cAMP = Mg(2+). Consequently, we suggest solubilization was not an effect of phosphorylation, hydrolysis, or disassociation of myosin from actin filaments. Scatchard analysis of myosin V binding to stripped dense vesicles showed saturable binding with a K(m) of 10 nM. Analysis of native vesicles indicates that these sites are fully occupied. Together, these data show there are over 100 myosin Vs/vesicle (100-nm radius). We propose that polyphosphate anions bind to myosin II and V and induce a conformational change that disrupts binding to a receptor.  相似文献   

14.
The subcellular distribution and composition of endogenously synthesized lipid in isolated white adipose cells were studied to determine the nature and extent of lipid compartmentation. After brief incubation of cells with labeled glucose, acetate, or palmitic acid, over 90% of newly synthesized triglyceride was localized in the bulk-lipid phase, indicating rapid intracellular transport and storage. From 13 to 20% of the newly formed lipid was diglyceride, and over 95% of it was localized in the central lipid-storage vacuole rather than in organelle systems concerned with esterification, thus indicating intracellular segregation of newly synthesized partial glycerides. Most of the newly synthesized phosphatides partitioned with membranous organelles. Synthesis of cholesterol or cholesteryl ester was negligible. After brief incubation of cells with labeled glucose, the relative specific activity of organelle triglyceride was mitochondria > microsomes > liposomes > soluble supernatant > bulk lipid. In pulse-chase studies the specific activity of organelle triglyceride decreased and that of the bulk fraction increased reflecting intracellular lipid transport. The data suggest that a significant proportion of newly formed lipid is transferred from mitochondrial membranes into the storage vacuole by direct lipid-lipid interaction. Liposomes, which consist of small enclosed lipid droplets resembling chylomicrons, contained triglycerides of specific activity similar to microsomal triglyceride. While the evidence that liposome triglyceride may be microsomal in origin is indirect, the results do indicate that the liposome fraction represents a phase in the transport and(or) storage of new glyceride. At least two forms of compartmentation of newly synthesized lipids occurred. The first, termed "structural," refers to localization of lipids to organelle fractions. The second type of compartmentation, termed "chemical," concerns the intracellular segregation of a specific lipid class. The accumulation and segregation of newly synthesized diglyceride in the bulk storage pool are examples of the latter form of compartmentation.  相似文献   

15.
Recent studies with myosin heavy chain mutants in the slime mold Dictyostelium discoideum and the yeast Saccharomyces cerevisiae indicate that the myosin heavy chain gene is not essential for cell survival under laboratory growth conditions. However, cells lacking a normal myosin heavy chain gene demonstrate substantial alterations in growth and cell division. In this study, we report that a disruption mutant in the rod portion of the yeast myosin heavy chain gene, MYO1, produces abnormal chitin distribution and cell wall organization at the mother-bud neck in a high proportion of dividing cells. It is suggested that this phenotype is the cause of the cell division defect and the osmotic sensitivity of yeast MYO1 mutants. In the absence of a normal MYO1 polypeptide, yeast cells alter their cell type specific budding pattern. It is concluded that an intact myosin heavy chain gene is required to maintain the cell type specific budding pattern and the correct localization and deposition of chitin and cell wall components during cell growth and division.  相似文献   

16.
While unconventional myosins interact with different stages of the endocytic pathway, they are ascribed a transport function that is secondary to the protein complexes that control organelle identity. Endosomes are subject to a dynamic, continuous flux of proteins that control their characteristic properties, including their motility within the cell. Efforts to describe the changes in identity of this compartment have largely focused on the adaptors present on the compartment and not on the motile properties of the compartment itself. In this study, we use a combination of optogenetic and chemical‐dimerization strategies to target exogenous myosin VI to early endosomes, and probe its influence on organelle motility, morphology and identity. Our analysis across timescales suggests a model wherein the artificial engagement of myosin VI motility on early endosomes restricts microtubule‐based motion, followed by morphological changes characterized by the rapid condensation and disintegration of organelles, ultimately leading to the enhanced overlap of markers that demarcate endosomal compartments. Together, our findings show that synthetic engagement of myosin VI motility is sufficient to alter organelle homeostasis in the endocytic pathway.   相似文献   

17.
Motors are molecular machines that move their cargo along F-actin or microtubules. Fungal representatives of myosin, kinesin and dynein motors support many cellular processes including polar growth, cell division and mitosis. Recent progress in understanding their cellular roles has revealed common principles. However, it has become obvious that fungi have also developed diverse strategies to cope with long-distance organelle transport.  相似文献   

18.
During their life cycle, amebae of the cellular slime mould Dictyostelium discoideum aggregate to form multicellular structures in which differentiation takes place. Aggregation depends upon the release of chemotactic signals of 3',5'-cAMP from aggregation centers. In response to the signals, aggregating amebae elongate, actively more toward the attractive source, and may be easily identified from the other cells because of their polarized appearance. To examine the role of cytoskeletal components during ameboid locomotion, immunofluorescence microscopy with antibodies to actin, myosin, and to a microtubule-associated component was used. In addition, rhodamine-labeled phallotoxin was employed. Actin and myosin display a rather uniform distribution in rounded unstretched cells. In polarized locomoting cells, actin fluorescence (due to both labeled phallotoxin and specific antibody) is prevalently concentrated in the anterior pseudopod while myosin fluorescence appears to be excluded from the pseudopod. Similarly, microtubules in locomoting cells are excluded from the leading pseudopod. The cell nucleus is attached to the microtubule network by way of a nucleus-associated organelle serving as a microtubule-organizing center and seems to be maintained in a rather fixed position by the microtubules. These findings, together with available morphological and biochemical evidences, are consistent with a mechanism in which polymerized actin is moved into the pseudopod through its interaction with myosin at the base of the pseudopod. Microtubules, apparently, do not actively participate in movement but seem to behave as anchorage structures for the nucleus and possibly other cytoplasmic organelles.  相似文献   

19.
Myosin VI has been implicated in various steps of organelle dynamics. However, the molecular mechanism by which this myosin contributes to membrane traffic is poorly understood. Here, we report that myosin VI is associated with a lysosome-related organelle, the melanosome. Using an actin-based motility assay and video microscopy, we observed that myosin VI does not contribute to melanosome movements. Myosin VI expression regulates instead the organization of actin networks in the cytoplasm. Using a cell-free assay, we showed that myosin VI recruited actin at the surface of isolated melanosomes. Myosin VI is involved in the endocytic-recycling pathway, and this pathway contributes to the transport of a melanogenic enzyme to maturing melanosomes. We showed that depletion of myosin VI accumulated a melanogenic enzyme in enlarged melanosomes and increased their melanin content. We confirmed the requirement of myosin VI to regulate melanosome biogenesis by analysing the morphology of melanosomes in choroid cells from of the Snell's waltzer mice that do not express myosin VI. Together, our results provide new evidence that myosin VI regulates the organization of actin dynamics at the surface of a specialized organelle and unravel a novel function of this myosin in regulating the biogenesis of this organelle.  相似文献   

20.
Investigations of peroxisome biogenesis in diverse organisms reveal new details of this unique process and its evolutionary conservation. Interactions among soluble receptors and the membrane peroxins that catalyze protein translocation are being mapped. Ubiquitination is observed. A receptor enters the organelle carrying folded cargo and recycles back to the cytosol. Tiny peroxisome remnants - vesicles and tubules - are discovered in pex3 mutants that lack the organelle. When the mutant is transfected with a good PEX3 gene, these protoperoxisomes acquire additional membrane peroxins and then import the matrix enzymes to reform peroxisomes. Thus, de novo formation need not be postulated. Dynamic imaging of yeast reveals dynamin-dependent peroxisome division and regulated actin-dependent segregation of the organelle before cell division. These results are consistent with biogenesis by growth and division of pre-existing peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号