首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Branched-chain amino acids are transported into Escherichia coli by two osmotic shock-sensitive systems (leucine-isoleucine-valine and leucine-specific transport systems). These high-affinity systems consist of separate periplasmic binding protein components and at least three common membrane-bound components. In this study, one of the membrane-bound components, livG, was identified. A toxic analog of leucine, azaleucine, was used to isolate a large number of azaleucine-resistant mutants which were defective in branched-chain amino acid transport. Genetic complementation studies established that two classes of transport mutants with similar phenotypes, livH and livG, were obtained which were defective in one of the membrane-associated transport components. Since the previously cloned plasmid, pOX1, genetically complemented both livH and livG mutants, we were able to verify the physical location of the livG gene on this plasmid. Recombinant plasmids which carried different portions of the pOX1 plasmid were constructed and subjected to complementation analysis. These results established that livG was located downstream from livH with about 1 kilobase of DNA in between. The expression of these plasmids was studied in minicells; these studies indicate that livG appears to be membrane bound and to have a molecular weight of 22,000. These results establish that livG is a membrane-associated component of the branched-chain amino acid transport system in E. coli.  相似文献   

2.
The high affinity branched-chain amino acid transport system (LIV-I) in Pseudomonas aeruginosa is composed of five components: BraC, a periplasmic binding protein for branched-chain amino acids; BraD and BraE, integral membrane proteins; BraF and BraG, putative nucleotide-binding proteins. By using a T7 RNA polymerase/promoter system we overproduced the BraD, BraE, BraF, and BraG proteins in Escherichia coli. The proteins were found to form a complex in the E. coli membrane and solubilized from the membrane with octyl glucoside. The LIV-I transport system was reconstituted into proteoliposomes from solubilized proteins by a detergent dilution procedure. In this reconstituted system, leucine transport was completely dependent on the presence of all five Bra components and on ATP loaded internally to the proteoliposomes. Alanine and threonine in addition to branched-chain amino acids were transported by the proteoliposomes, reflecting the substrate specificity of the BraC protein. GTP replaced ATP well as an energy source, and CTP and UTP also replaced ATP partially. Consumption of loaded ATP and concomitant production of orthophosphate were observed only when BraC and leucine, a substrate for LIV-I, were added together to the proteoliposomes, indicating that the LIV-I transport system has an ATPase activity coupled to translocation of branched-chain amino acids across the membrane.  相似文献   

3.
The livR locus, which leads to a trans-recessive derepression of branched-chain amino acid transport and periplasmic branched-chain amino acid-binding proteins, is responsible for greatly increased sensitivity toward growth inhibition by leucine, valine, and serine and, as shown previously, for increased sensitivity toward toxicity by branched-chain amino acid analogues, such as 4-azaleucine or 5',5',5'-trifluoroleucine. These phenotypes are similar to those of relA mutants; however, the livR mutants retain the stringent response of ribonucleic acid synthesis. However, an increase in the rate of transport or in the steady-state intracellular level of amino acids in the livR strain cannot completely account for this sensitivity. The ability of the LIV-I transport system to carry out exchange of pool amino acids for extracellular leucine is a major factor in leucine sensitivity. The previous finding that inhibition of threonine deaminase by leucine contributes to growth inhibition is confirmed by simulating the in vivo conditions using a toluene-treated cell preparation with added amino acids at levels corresponding to the internal pool. The relationship between transport systems and corresponding biosynthetic pathways is discussed and the general principle of a coordination in the regulation of transport and biosynthetic pathways is forwarded. The finding that the LIV-I transport system functions well for amino acid exchange in contrast to the LIV-II system provides another feature that distinguishes these systems in addition to previously described differences in regulation and energetics.  相似文献   

4.
Uptake of leucine by the marine pseudomonad B-16 is an energy-dependent, concentrative process. Respiratory inhibitors, uncouplers, and sulfhydryl reagents block transport. The uptake of leucine is Na+ dependent, although the relationship between the rate of leucine uptake and Na+ concentration depends, to some extent, on the ionic strength of the suspending assay medium and the manner in which cells are washed prior to assay. Leucine transport can be separated into at least two systems: a low-affinity system with an apparent Km of 1.3 X 10(-5) M, and a high-affinity system with an apparent Km of 1.9 X 10(-7) M. The high-affinity system shows a specificity unusual for bacterial systems in that both aromatic and aliphatic amino acids inhibit leucine transport, provided that they have hydrophobic side chains of a length greater than that of two carbon atoms. The system exhibits strict stereospecificity for the L form. Phenylalanine inhibition was investigated in more detail. The Ki for inhibition of leucine transport by phenylalanine is about 1.4 X 10(-7) M. Phenylalanine itself is transported by an energy-dependent process whose specificity is the same as the high-affinity leucine transport system, as is expected if both amino acids share the same transport system. Studies with protoplasts indicate that a periplasmic binding protein is not an essential part of this transport system. Fein and MacLeod (J. Bacteriol. 124:1177-1190, 1975) reported two neutral amino acid transport systems in strain B-16: the DAG system, serving glycine, D-alanine, D-serine, and alpha-aminoisobutyric acid; and the LIV system, serving L-leucine, L-isoleucine, L-valine, and L-alanine. The high-affinity system reported here is a third neutral amino acid transport system in this marine pseudomonad. We propose the name "LIV-II" system.  相似文献   

5.
In Escherichia coli, the active transport of phenylalanine is considered to be performed by two different systems, AroP and PheP. However, a low level of accumulation of phenylalanine was observed in an aromatic amino acid transporter-deficient E. coli strain (DeltaaroP DeltapheP Deltamtr Deltatna DeltatyrP). The uptake of phenylalanine by this strain was significantly inhibited in the presence of branched-chain amino acids. Genetic analysis and transport studies revealed that the LIV-I/LS system, which is a branched-chain amino acid transporter consisting of two periplasmic binding proteins, the LIV-binding protein (LIV-I system) and LS-binding protein (LS system), and membrane components, LivHMGF, is involved in phenylalanine accumulation in E. coli cells. The K(m) values for phenylalanine in the LIV-I and LS systems were determined to be 19 and 30 micro M, respectively. Competitive inhibition of phenylalanine uptake by isoleucine, leucine, and valine was observed for the LIV-I system and, surprisingly, also for the LS system, which has been assumed to be leucine specific on the basis of the results of binding studies with the purified LS-binding protein. We found that the LS system is capable of transporting isoleucine and valine with affinity comparable to that for leucine and that the LIV-I system is able to transport tyrosine with affinity lower than that seen with other substrates. The physiological importance of the LIV-I/LS system for phenylalanine accumulation was revealed in the growth of phenylalanine-auxotrophic E. coli strains under various conditions.  相似文献   

6.
We report here on the cloning and functional characterization of the protein responsible for the system A amino acid transport activity that is known to be expressed in most mammalian tissues. This transporter, designated ATA2 for amino acid transporter A2, was cloned from rat skeletal muscle. It is distinct from the neuron-specific glutamine transporter (GlnT/ATA1). Rat ATA2 consists of 504 amino acids and bears significant homology to GlnT/ATA1 and system N (SN1). ATA2-specific mRNA is ubiquitously expressed in rat tissues. When expressed in mammalian cells, ATA2 mediates Na(+)-dependent transport of alpha-(methylamino)isobutyric acid, a specific model substrate for system A. The transporter is specific for neutral amino acids. It is pH-sensitive and Li(+)-intolerant. The Na(+):amino acid stoichiometry is 1:1. When expressed in Xenopus laevis oocytes, transport of neutral amino acids via ATA2 is associated with inward currents. The substrate-induced current is Na(+)-dependent and pH-sensitive. The amino acid transport system A is particularly known for its adaptive and hormonal regulation, and therefore the successful cloning of the protein responsible for this transport activity represents a significant step toward understanding the function and expression of this transporter in various physiological and pathological states.  相似文献   

7.
Campylobacter jejuni is a leading cause of diarrheal disease in humans and an intestinal commensal in poultry and other agriculturally important animals. These zoonotic infections result in significant amounts of C. jejuni present in the food supply to contribute to disease in humans. We previously found that a transposon insertion in Cjj81176_1038, encoding a homolog of the Escherichia coli LivJ periplasmic binding protein of the leucine, isoleucine, and valine (LIV) branched-chain amino acid transport system, reduced the commensal colonization capacity of C. jejuni 81-176 in chicks. Cjj81176_1038 is the first gene of a six-gene locus that encodes homologous components of the E. coli LIV system. By analyzing mutants with in-frame deletions of individual genes or pairs of genes, we found that this system constitutes a LIV transport system in C. jejuni responsible for a high level of leucine acquisition and, to a lesser extent, isoleucine and valine acquisition. Despite each LIV protein being required for branched-chain amino acid transport, only the LivJ and LivK periplasmic binding proteins were required for wild-type levels of commensal colonization of chicks. All LIV permease and ATPase components were dispensable for in vivo growth. These results suggest that the biological functions of LivJ and LivK for colonization are more complex than previously hypothesized and extend beyond a role for binding and acquiring branched-chain amino acids during commensalism. In contrast to other studies indicating a requirement and utilization of other specific amino acids for colonization, acquisition of branched-chain amino acids does not appear to be a determinant for C. jejuni during commensalism.  相似文献   

8.
Using the double thymidine block technique. Ehrlich ascites tumor cells (ELD) carried in continuous spinner culture have been synchronized. Simultaneous monitoring of 3H-thymidine incorporation, cell number and mitotic index yielded a cell cycle time of approximately 13.5 hours. This is composed of an S period of 3-4 hours. G2 of 6-8 hours and M of 1-2 hours. No appreciable G1 is present. Ehrlich cells synchronized in this manner were used to investigate the characteristics of two neutral amino acid transport systems during progression through the cell cycle. Unidirectional influx via the Na-dependent system A was studied using C14-alpha-aminoisobutyrate (AIB) as substrate. The Na-independent system L was monitored using 3H-leucine and 14C-cycloleucine as substrates. Transport by the A system was minimal in M and early S. It underwent a three-fold increase during late S and early G2. In mid G2 the transport via this system rapidly dropped and remained low again through M and early S. The intracellular/extracellular ratios of AIB indicate that the system is actively transporting AIB thoughout the cell cycle. The minimum ratios of approximately 3 were achieved during early M and the maximum ratios of approximately 9 were achieved in late S, early G2. The uptake of leucine and cycloleucine by the L system was quite different during the cell cycle. Maximal unidirectional influx by this system occurred during early and mid S period. Upon progression into G2 the transport rate dropped and remained reduced throughout M. Intracellular/extracellular ratios of leucine or cycloleucine were near unity at the peak of the transport activity (early S) and dropped to values of 0.5 to 0.6 throughout the remainder of the cycle. This result indicates that inward transport by the L system is, for the most part, non-active in growing cells.  相似文献   

9.
10.
Mammalian target of rapamycin (mTOR) mediates a signaling pathway that couples amino acid availability to S6 kinase (S6K) activation, translational initiation and cell growth rate, participating to a versatile checkpoint that inspects the energy status of the cell. The pathway is activated by branched-chain amino acids (BCAA), leucine being the most effective, whereas amino acid dearth and ATP shortage lead to its deactivation. Glutamine- or amino acid-deprivation and hyperosmotic stress induce a fast cell shrinkage (with marked decrease of the intracellular water volume) associated to mTOR-dependent S6K1 dephosphorylation. Using cultured Jurkat cells, we have measured the changes of cell content and intracellular concentration of ATP, of relevant amino acids (BCAA) and of ninhydrin-positive substances (NPS, as measure of NH(2)-bearing organic osmolytes) under conditions that deactivate (leucine-deprivation, glutamine-deprivation, amino acid withdrawal, sorbitol-induced hyperosmotic stress) or reactivate a previously deactivated, mTOR-S6K1 pathway. We have also assessed the mitochondrial function by measurements of mitochondrial transmembrane potential in cells subjected to hypertonic stress. Our results indicate that diverse control signals converge on the mTOR-S6K1 signaling pathway. In the presence of adequate energy resources, the pathway senses the amino acid availability as inward transport of effective amino acids (as BCAA and especially leucine), but its activation occurs only in the presence of an extracellular amino acid complement, with glutamine as obligatory component, and does not tolerate decrements of cell water volume incapable of maintaining adequate intracellular physicochemical conditions.  相似文献   

11.
Since both transport activity and the leucine biosynthetic enzymes are repressed by growth on leucine, the regulation of leucine, isoleucine, and valine biosynthetic enzymes was examined in Escherichia coli K-12 strain EO312, a constitutively derepressed branched-chain amino acid transport mutant, to determine if the transport derepression affected the biosynthetic enzymes. Neither the iluB gene product, acetohydroxy acid synthetase (acetolactate synthetase, EC 4.1.3.18), NOR THE LEUB gene product, 3-isopropylmalate dehydrogenase (2-hydroxy-4-methyl-3-carboxyvalerate-nicotinamide adenine dinucleotide oxido-reductase, EC 1.1.1.85), were significantly affected in their level of derepression or repression compared to the parental strain. A number of strains with alterations in the regulation of the branched-chain amino acid biosynthetic enzymes were examined for the regulation of the shock-sensitive transport system for these amino acids (LIV-I). When transport activity was examined in strains with mutations leading to derepression of the iluB, iluADE, and leuABCD gene clusters, the regulation of the LIV-I transport system was found to be normal. The regulation of transport in an E. coli strain B/r with a deletion of the entire leucine biosynthetic operon was normal, indicating none of the gene products of this operon are required for regulation of transport. Salmonella typhimurium LT2 strain leu-500, a single-site mutation affecting both promotor-like and operator-like function of the leuABCD gene cluster, also had normal regulation of the LIV-I transport system. All of the strains contained leucine-specific transport activity, which was also repressed by growth in media containing leucine, isoleucine and valine. The concentrated shock fluids from these strains grown in minimal medium or with excess leucine, isoleucine, and valine were examined for proteins with leucine-binding activity, and the levels of these proteins were found to be regulated normally. It appears that the branched-chain amino acid transport systems and biosynthetic enzymes in E. coli strains K-12 and B/r and in S. typhimurium strain LT2 are not regulated together by a cis-dominate type of mechanism, although both systems may have components in common.  相似文献   

12.
Two transport systems for neutral amino acids have been characterised in LLC-PK1 cells. The first, which transport alanine in a sodium-dependent manner, also mediates alanine exchange and is preferentially inhibited by serine, cysteine, and α-amino-n-butyric acid. This system resembles the ASC system in Ehrlich ascites and some other cell types. There is only a small contribution of other systems to alanine uptake. The second, which transports leucine with no requirement for sodium and mediates leucine exchange, is blocked by 2-aminonorbornane-2-carboxylic acid and hydrophobic amino acids. This system is similar to the L system described in other cell types. LLC-PK1 cells retain several other features implying renal proximal tubule origin; our results thus suggest that these transport systems may be involved in the reabsorption of neutral amino acids by the nephron in vivo.  相似文献   

13.
Xcp proteins constitute the secretory apparatus of Pseudomonas aeruginosa. Deduced amino acid sequence of xcp genes, expression, and subcellular localization revealed unexpected features. Indeed, most Xcp proteins are found in the cytoplasmic membrane although xcp mutations lead to periplasmic accumulation of exoproteins, indicating that the limiting step is translocation across the outer membrane. To understand the mechanism by which the machinery functions and the interactions between its components, it is valuable to know their membrane organization. We report data demonstrating the N(in)-C(out) topologies of three general secretion pathway components, the XcpP, -Y, and -Z proteins.  相似文献   

14.
The nucleotide sequence of the genes encoding the high affinity, branched-chain amino acid transport systems LIV-I and LS has been determined. Seven genes are present on a 7568-base pair DNA fragment, six of which participate directly in branched-chain amino acid transport. Two periplasmic amino acid-binding proteins are encoded by the livJ (LIV-BP) and livK (LS-BP) genes. These two proteins confer specificity on the LIV-I and LS transport systems. livK is the first gene in a polycistronic message that includes four genes encoding membrane components, livHMGF. The protein products of the livHMGF genes are shared by the two systems. An analysis of the livH and livM DNA sequences suggests that they encode hydrophobic proteins capable of spanning the membrane several times. The LivG and LivF proteins are less hydrophobic, but are also tightly associated with the membrane. Both LivG and LivF contain the consensus sequence for adenine nucleotide binding observed in many other transport proteins. A deletion strain that does not express any of the liv genes was constructed. This strain was used to show that each of the membrane component genes is required for high affinity leucine transport, including two genes, livM and livF, for which no previous genetic evidence had been obtained.  相似文献   

15.
Growth factors, mitogens, and malignant transformation can alter the rate of amino acid uptake in mammalian cells. It has been suggested that the effects of these stimuli on proliferation are mediated by activation of Na+/H+ exchange. In lymphocytes, Na+/H+ exchange can also be activated by phorbol esters and by hypertonic media. To determine the relationship between the cation antiport and amino acid transport, we tested the effects of these agents on the uptake of alpha-aminoisobutyric acid (AIB), methyl-AIB, proline, and leucine in rat thymocytes. Both 12-O-tetradecanoylphorbol-13-acetate (TPA) and hypertonicity stimulated amino acid uptake through system A (AIB, proline, and methyl-AIB). In addition, TPA, but not hypertonicity, also elevated leucine uptake. The stimulation of the Na+ -dependent system A was not due to an increased inward electrochemical Na+ gradient. The effects of TPA and hypertonic treatment were not identical: Stimulation of AIB uptake by TPA was observed within minutes, whereas at least 1 hr was required for the effect of hypertonicity to become noticeable. Moreover, stimulation by hypertonicity but not that by TPA, was partially inhibited by cycloheximide, suggesting a role of protein synthesis. That stimulation of Na+/H+ exchange does not mediate the effects on amino acid transport is suggested by two findings: 1) the stimulation of AIB uptake was not prevented by concentrations of amiloride or of 5-(N,N-disubstituted) amiloride analogs that completely inhibit the Na+/H+ antiport and 2) conditions that mimic the effect of the antiport, namely, increasing [Na+]i or raising pHi failed to stimulate amino acid uptake. Thus, in lymphocytes, activation of Na+/H+ exchange and stimulation of amino acid transport are not casually related.  相似文献   

16.
Abstract: The relationship between the transport of thyroid hormones and that of amino acids was examined by measuring the uptake of amino acids that are characteristic substrates of systems L, A, and N, and the effect of 3,3',5-triiodo-L-thyronine (T3) on this uptake, in cultured astrocytes. Tryptophan and leucine uptakes were rapid, Na+-independent, and efficiently inhibited by T3 (half-inhibition at ∼ 2 μ M ). Two Na+-independent L-like systems (L1 and L2), common to leucine and aromatic amino acids, were characterized kinetically. System L2 had a low affinity for leucine and tryptophan ( K m= 0.3–0.9 m M ). The high-affinity system L1 ( K m∼ 10 μ M for both amino acids) was competitively inhibited by T3 with a K i of 2–3 μ M (close to the T3 transport K m). Several T3 analogues inhibited system L1 and the T3 transport system similarly. Glutamine uptake and α-(methylamino)isobutyric acid uptake were, respectively, two and 200 times lower than tryptophan and leucine uptakes. T3 had little effect on the uptakes of glutamine and α-(methylamino)isobutyric acid. The results indicate that the T3 transport system and system L1 are related.  相似文献   

17.
18.
The arginine-ornithine periplasmic binding protein, an essential component of the arginine-ornithine transport system of Escherichia coli, was isolated in a phosphorylated form and in a non-phosphorylated form from the periplasmic fluid, after incubation of intact cells with (32P)orthophosphate under conditions similar to those used for arginine transport studies. The binding protein could also be labeled with 32Pi by incubation in vitro of the periplasmic fluid with [gamma-32P]ATP, or by incubation in vitro of the purified binding protein with radioactive ATP, Mg2+ and a phosphokinase enzyme released by osmotic-shock treatment. The two forms of the protein were separated by DEAE-Sephacel chromatography. By several different criteria, which included binding studies, analyses of the amino acid composition of the two forms of the protein, analysis by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and testing for other components of the periplasmic space with affinities for inorganic phosphate, it was concluded that the 32P-labeled protein corresponds to a phosphorylated form of the arginine-ornithine-binding protein. The phosphorylation reaction required Mg2+ and a phosphokinase from the periplasmic fluid. The dissociation constant of the phosphorylated protein for arginine was 5.0 microM (dissociation constant of the unmodified protein equals 0.1 microM), suggesting that the chemically modified protein is the active form of the molecule which releases the ligand for its translocation through the cytoplasmic membrane. The pH-stability profile of the phosphoprotein has a 'U'-shape characteristic of acyl phosphates. Reaction of the phosphorylated binding protein with hydroxylamine at pH 5.4, also released Pi from the phosphoprotein. These properties suggest that the phosphoryl group of the phosphoprotein is linked covalently to a carboxyl function of the protein. This information indicates that ATP is a direct energy donor for the active transport of arginine and ornithine in E. coli, and a step of phosphorylation of the arginine-ornithine-binding protein appears to be involved in the utilization of the phosphate bond energy by the arginine-ornithine transport system.  相似文献   

19.
The regulation of branched-chain amino acid transport and periplasmic binding proteins was studied in Escherichia coli strains which were isogenic except for the relA locus, the gene for the "stringent factor," which is responsible for guanosine tetraphosphate synthesis. The strain containing the relA mutation could not be derepressed for the synthesis of leucine transport or binding proteins when shifted from a medium containing all 20 amino acids in excess to one in which leucine was limiting. The relA+ strain showed normal derepression under these conditions.  相似文献   

20.
p70S6 kinase is a multipotent kinase that phosphorylates substrates in response to extracellular stimuli. This kinase activity inhibits apoptosis, regulates cell size and controls translation. In the CNS, p70S6K also participates in synaptic plasticity. In this study, we report that leucine, a branched-chain amino acid, induces phosphorylation and activation of p70S6 kinase in cortical neurons. Leucine also induces phosphorylation of S6 protein, a substrate of p70S6K. These effects of leucine are completely inhibited by rapamycin, consistent with mammalian target of rapamycin mediating p70S6 phosphorylation. Finally, we demonstrate that the action of leucine on cortical neurons is mediated by the system L amino acid transporter. Neurons express components of system L amino acid transporter LAT1, LAT2, and CD98. Leucine uptake and its effect on p70S6 kinase are both inhibited by a specific inhibitor of system L amino acid transporter. We propose that leucine plays important roles in regulating signaling by p70S6 kinase by acting as an intercellular communicator in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号