首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RPE65 is the isomerohydrolase in the retinoid visual cycle essential for recycling of 11-cis retinal, the chromophore for visual pigments in both rod and cone photoreceptors. Mutations in the RPE65 gene are associated with inherited retinal dystrophies with unknown mechanisms. Here we show that two point mutations of RPE65, R91W and Y368H, identified in patients with retinal dystrophies both abolished the isomerohydrolase activity of RPE65 after a subretinal injection into the Rpe65-/- mice and in the in vitro isomerohydrolase activity assay, independent of their protein levels. Further, the R91W and Y368H mutants showed significantly decreased protein levels but unchanged mRNA levels when compared with the wild-type RPE65 (wtRPE65). Protein stability analysis showed that wtRPE65 is a fairly stable protein, with an apparent half-life longer than 10 h, when expressed in 293A cells. Under the same conditions, mutants R91W and Y368H both showed substantially decreased protein stabilities, with half-lives less than 2 and 6 h, respectively. Subcellular fractionation and Western blot analysis demonstrated that wtRPE65 predominantly exists in the membrane fraction, while both of the mutants are primarily distributed in the cytosolic fraction, suggesting that these mutations disrupt the membrane association of RPE65. However, palmitoylation assay showed that wtRPE65 and both of the mutants were palmitoylated. These results suggest that these mutations may result in critical structural alterations of RPE65 protein, disrupt its membrane association, and consequently impair its isomerohydrolase activity, leading to retinal degeneration.  相似文献   

2.
We used multiplex PCR followed by sequencing to screen for mutations in the 14 exons of theRPE65 gene in early-hildhood-onset autosomal recessive retinitis pigmentosa (arRP) and Leber’s congenital amaurosis (LCA) patients. The RPE65 protein is believed to play an important role in the metabolism of vitamin A in the visual cycle and mutations identified in the gene could have implications for vitamin A-based therapeutic intervention. We were able to identify a homozygous mutation (AAT → AAG) in exon 9 in an arRP patient and a heterozygous missense transversion (AAT → AAG) also in exon 9 of an LCA patient. We also identified a polymorphism in exon 10 (GAG → GAA) in an arRP as well as an LCA patient. Mutation screening would be greatly facilitated by multiplex PCR which could cut down costs, labour and time involved. The nucleotide changes observed in this study could bede novo. Though a larger study has been undertaken, from the preliminary results it appears that in India theRPE65 gene seems to be less involved in causation of LCA.  相似文献   

3.
维生素C为6碳多羟化合物,在化学反应中易失去电子,依次生成半脱氧抗坏血酸和脱氧抗坏血酸。因此,维生素C可作为自由基清除剂,能迅速与超氧阴离子、氢化氧基、过氧化氢、羟自由基反应,生成抗坏血酸自由基。蓝光作为一种短波长,靠近紫外线频段的光,具有能量高的特点,是自然界中导  相似文献   

4.
5.
6.
Gollapalli DR  Maiti P  Rando RR 《Biochemistry》2003,42(40):11824-11830
RPE65 is a major protein of unknown function found associated with the retinyl pigment epithelial (RPE) membranes [Hamel, C. P., Tsilou, E., Pfeffer, B. A., Hooks, J. J., Detrick, B., and Redmond, T. M. (1993) J. Biol. Chem. 268, 15751-15757; Bavik, C. O., Levy, F., Hellman, U., Wernstedt, C., and Eriksson, U. (1993) J. Biol. Chem. 268, 20540-20546]. RPE65 knockouts fail to synthesize 11-cis-retinal, the chromophore of rhodopsin, and accumulate all-trans-retinyl esters in the RPE. Previous studies have also shown that RPE65 is specifically labeled with all-trans-retinyl ester based affinity labeling agents, suggesting a retinyl ester binding role for the protein. In the present work, we show that purified RPE65 binds all-trans-retinyl palmitate (tRP) with a K(D) = 20 pM. These quantitative experiments are performed by measuring the quenching of RPE65 fluorescence by added tRP. The binding for tRP is highly specific because 11-cis-retinyl palmitate binds with a K(D) = 14 nM, 11-cis-retinol binds with a K(D) = 3.8 nM, and all-trans-retinol (vitamin A) binds with a K(D) = 10.8 nM. This stereospecificity for tRP is to be compared to the binding of retinoids to BSA, where virtually no discrimination is found in the binding of the same retinoids. This work provides further evidence that RPE65 functions by binding to and mobilizing the highly hydrophobic all-trans-retinyl esters, allowing them to enter the visual cycle.  相似文献   

7.
EL/Suz (EL) mice experience recurrent seizures that are similar to common partial complex epilepsy in humans. In the mice, seizures occur naturally at 90–100 days of age, but can be induced in younger mice and analyzed as a semi-quantitative trait after gentle rhythmic stimulation. A previous genetic mapping study of EL backcrosses to the strains ABP/LeJ or DBA/2J showed two quantitative trait loci (QTL) with large effects on seizure frequency (El1, Chr 9; El2, Chr 2) and implied the existence of other QTL with lesser effects. To further the understanding of EL-derived seizure alleles, we examined intercross progeny of EL and the strains ABP/LeJ and DDY/Jcl, and also a backcross of (EL x DDY)F1 hybrids to DDY. A new large-effect seizure frequency QTL was found (El5, Chr 14), a more minor QTL confirmed (El3, Chr 10), and two additional QTL proposed (El4, Chr 9; El6, Chr 11). The serotonin receptor gene, Htr2a, maps near and is a candidate for El5, and linkages of other serotonin receptor genes to seizure frequency QTL are noted. In addition, a strong gender effect was revealed, and epistasis was found between Chr 9 and Chr 14 markers. Despite this progress, however, our results revealed a more complex determinism of epilepsy in EL mice than previously described. In particular, no single El locus or pair was essential for frequent seizures, as QTL with large effects, such as El5, El2, and El1, were highly dependent on genetic context. Our studies highlight the importance of gene interaction in some complex mammalian traits defined by natural variation.  相似文献   

8.
9.
Cryptochromes are sensory blue light receptors mediating various responses in plants and animals. Studies on the mechanism of plant cryptochromes have been focused on the flowering plant Arabidopsis. In the genome of the unicellular green alga Chlamydomonas reinhardtii, a single plant cryptochrome, Chlamydomonas photolyase homologue 1 (CPH1), has been identified. The N-terminal 500 amino acids comprise the light-sensitive domain of CPH1 linked to a C-terminal extension of similar size. We have expressed the light-sensitive domain heterologously in Escherichia coli in high yield and purity. The 59-kDa protein bears exclusively flavin adenine dinucleotide in its oxidized state. Illumination with blue light induces formation of a neutral flavin radical with absorption maxima at 540 and 580 nm. The reaction proceeds aerobically even in the absence of an exogenous electron donor, which suggests that it reflects a physiological response. The process is completely reversible in the dark and exhibits a decay time constant of 200 s in the presence of oxygen. Binding of ATP strongly stabilizes the radical state after illumination and impedes the dark recovery. Thus, ATP binding has functional significance for plant cryptochromes and does not merely result from structural homology to DNA photolyase. The light-sensitive domain responds to illumination by an increase in phosphorylation. The autophosphorylation takes place although the protein is lacking its native C-terminal extension. This finding indicates that the extension is dispensable for autophosphorylation, despite the role it has been assigned in mediating signal transduction in Arabidopsis.  相似文献   

10.
11.
The isomerization of all-trans-retinyl ester to 11-cis-retinol in the retinal pigment epithelium (RPE) is a critical step in the visual cycle and is essential for normal vision. Recently, we have established that protein RPE65 is the isomerohydrolase catalyzing this reaction. The present study investigated if metal ions are required for the isomerohydrolase activity of RPE65. The conversion of all-trans-[3H]retinol to 11-cis-[3H]retinol was used as the measure for isomerohydrolase activity. Metal chelators 2,2'-bipyridine and 1,10-phenanthroline both showed dose-dependent inhibitions of the isomerohydrolase activity in bovine RPE microsomes, with IC50 values of 0.5 and 0.2 mm, respectively. In the same reaction systems, however, lecithin-retinol acyltransferase (LRAT) activity was not affected by these metal chelators. The isomerohydrolase activity inhibited by the metal chelators was restored by FeSO4 but not by CuSO4, ZnCl2, or MgCl2. Moreover, addition of Fe(III) citrate or FeCl3 did not restore the activity, indicating that Fe2+ is the metal ion essential for the isomerohydrolase activity. To confirm this result in recombinant RPE65, we expressed RPE65 in a 293A cell line stably expressing LRAT. In vitro activity assay showed that both metal chelators inhibited isomerohydrolase activity of recombinant RPE65. The addition of FeSO4 restored the enzymatic activity of the recombinant RPE65. Further, two specific iron-staining methods showed that purified RPE65 contains endogenous iron. Inductively coupled plasma mass spectrometry measurements showed that bovine RPE65 binds iron ion with a stoichiometry of 0.8 +/- 0.1. These results indicate that RPE65 is an iron-dependent isomerohydrolase in the visual cycle.  相似文献   

12.
Summary The possible antiproliferative effect of melatonin on retinal pigment epithelial (RPE) cells in vitro was investigated. Bovine RPE cells cultured in Ham’s F12 medium supplemented with 10% fetal bovine serum had a nuclear density of 73.6 ± 6.1 nuclei/mm2 at 72 h after seeding. The nuclear density at this time-point was doubled if either 50 or 100 ng/ml human epidermal growth factors (hEGF) was added to the culture medium. When these hEGF-stimulated cells were treated with melatonin from 10 to 500 pg/ml, the proliferation was suppressed with a dose-response relationship. At 250 and 500 pg/ml melatonin, the nuclear densities of the melatonin-treated cells were similar to those of the control cells. Using mitotically active SV-40 transformed human fetal RPE cells cultured in a serum-free medium, melatonin was also shown to be antiproliferative. In the presence of 500 pg/ml melatonin, the proliferation of these cells was inhibited to 77% as compared to the control. These results were further supported by the reduced [H3]thymidine uptake in the melatonin-treated cells. We propose that melatonin, at physiologic concentrations, has an antiproliferative effect, and that cultured RPE cells stimulated to proliferate by either hEGF treatment or SV-40 transfection are responsive to melatonin. Melatonin may either inhibit mitosis in actively dividing cells or modulate hEGF action.  相似文献   

13.
Takahashi Y  Moiseyev G  Chen Y  Ma JX 《FEBS letters》2005,579(24):5414-5418
We have recently reported that RPE65 from the retinal pigment epithelium is the isomerohydrolase, a critical enzyme in the visual cycle for regeneration of 11-cis retinal, the chromophore for visual pigments. Here, we demonstrated that mutation of any one of the absolutely conserved four histidine and one glutamic acid residues to alanine in RPE65 abolished its isomerohydrolase activity. Substitution of the conserved glutamic acid with glutamine also resulted in loss of the activity. Moreover, these mutations significantly reduced protein stability of RPE65. These results indicate that these conserved residues are essential for the isomerohydrolase activity of RPE65 and its stability.  相似文献   

14.
M Leino  I M Aho  E Kari  J Gynther  S Markkanen 《Life sciences》1984,35(20):1997-2001
The effects of melatonin and a related 5-methoxy-indole, 6-methoxy-1,2,3,4-tetrahydro-beta-carboline (6-MeO-THBC) were investigated in rats on the development of retinal degeneration in presence of high intensity illumination (HII). A morphometric method is used in which the degree of degeneration was evaluated by a computer-coupled graphical analyzer. Instead of measuring individual thicknesses of different retinal layers at various loci we measured large areas of retinal light microscopic sections. Thus the influence of sporadic artefactual and other fluctuations in the thickness of various layers of the retina can be essentially reduced. Continuous light produced significant degeneration of the retina and the degree of degeneration was further increased by both studied compounds and even more by 6-MeO-THBC. The role of melatonin and 6-MeO-THBC in retinal physiology is discussed.  相似文献   

15.
Although the primary biological function of retinal photoreceptors is to absorb light and provide visual information, extensive exposure to intense light could increase the risk of phototoxic reactions mediated by products of rhodopsin bleaching that might accumulate in photoreceptor outer segments (POS). The phototoxicity of POS, isolated from bovine retinas, was examined in cultured retinal pigment epithelium cells (ARPE-19) containing phagocytised POS and in selected model systems by determining POS ability to photogenerate singlet oxygen, and photoinduce oxidation of cholesterol and serum albumin. Bleaching of rhodopsin-rich POS with green light resulted in the formation of retinoid products exhibiting distinct absorption spectra in the near-UV. Irradiation of POS-fed ARPE-19 cells with blue light reduced their survival in a dose-dependent manner with the effect being stronger for cells containing prebleached POS. The specific and non-specific phagocytic activity of ARPE-19 cells was inhibited by sub-lethal photic stress mediated by phagocytised POS. The oxidising ability of POS photobleaching products was demonstrated both in a model system consisting of serum albumin and in ARPE-19 cells. Distinct photooxidation of proteins, mediated by POS, was observed using coumarin boronic acid as a sensitive probe of protein hydroperoxides. Irradiation of POS with blue light also induced oxidation of liposomal cholesterol as determined by HPLC-EC(Hg). Time-resolved singlet oxygen phosphorescence demonstrated the efficiency of retinoids, extracted from POS by chloroform-methanol treatment, to photogenerate singlet oxygen. The results indicate that photic stress mediated by POS photobleaching products could inhibit phagocytic efficiency of RPE cells and, ultimately, compromise their important biological functions.  相似文献   

16.
Jin M  Li S  Moghrabi WN  Sun H  Travis GH 《Cell》2005,122(3):449-459
The first event in light perception is absorption of a photon by an opsin pigment, which induces isomerization of its 11-cis-retinaldehyde chromophore. Restoration of light sensitivity to the bleached opsin requires chemical regeneration of 11-cis-retinaldehyde through an enzymatic pathway called the visual cycle. The isomerase, which converts an all-trans-retinyl ester to 11-cis-retinol, has never been identified. Here, we performed an unbiased cDNA expression screen to identify this isomerase. We discovered that the isomerase is a previously characterized protein called Rpe65. We confirmed our identification of the isomerase by demonstrating catalytic activity in mammalian and insect cells that express Rpe65. Mutations in the human RPE65 gene cause a blinding disease of infancy called Leber congenital amaurosis. Rpe65 with the Leber-associated C330Y and Y368H substitutions had no isomerase activity. Identification of Rpe65 as the isomerase explains the phenotypes in rpe65-/- knockout mice and in humans with Leber congenital amaurosis.  相似文献   

17.
The purpose of this study was to determine whether mice exposed to chronic cigarette smoke develop features of early age-related macular degeneration (AMD). Two month old C57Bl6 mice were exposed to either filtered air or cigarette smoke in a smoking chamber for 5 h/day, 5 days/week for 6 months. Eyes were fixed in 2.5% glutaraldehyde/2% paraformaldehyde and examined for ultrastructural changes by transmission electron microscopy. The contralateral eye was fixed in 2% paraformaldehyde and examined for oxidative injury to the retinal pigmented epithelium (RPE) by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) immunolabeling and apoptosis by TUNEL labeling. Mice exposed to cigarette smoke had immunolabeling for 8-OHdG in 85+/-3.7% of RPE cells counted compared to 9.5+/-3.9% in controls (p<0.00001). Bruch membrane was thicker in mice exposed to smoke (1086+/-332 nm) than those raised in air (543+/-132 nm; p = 0.0069). The two most pronounced ultrastructural changes (severity grading scale from 0-3) seen were a loss of basal infoldings (mean difference in grade = 1.98; p<0.0001), and an increase in intracellular vacuoles (mean difference in grade = 1.7; p<0.0001). Ultrastructural changes to Bruch membrane in cigarette-smoke exposed mice were smaller in magnitude but consistently demonstrated significantly higher grade injury in cigarette-exposed mice, including basal laminar deposits (mean difference in grade = 0.54; p<0.0001), increased outer collagenous layer deposits (mean difference in grade = 0.59; p = 0.002), and increased basal laminar deposit continuity (mean difference in grade = 0.4; p<0.0001). TUNEL assay showed a higher percentage of apoptotic RPE from mice exposed to cigarette smoke (average 8.0+/-1.1%) than room air (average 0+/-0%; p = 0.043). Mice exposed to chronic cigarette smoke develop evidence of oxidative damage with ultrastructural degeneration to the RPE and Bruch membrane, and RPE cell apoptosis. This model could be useful for studying the mechanism of smoke induced changes during early AMD.  相似文献   

18.
Previously, we showed that mutating RPE65 residue Phe-103 preferentially produces 13-cis-retinol instead of 11-cis-retinol, supporting a carbocation/radical cation mechanism of retinol isomerization. We asked whether this modulation of specificity can occur with residues other than Phe-103 and what role it plays in substrate binding and isomerization. We modeled the substrate-binding cleft of RPE65 to identify residues lining its surface. Many are phenylalanines and tyrosines, including three Phe residues (Phe-61, Phe-312, and Phe-526) forming an arch-like arrangement astride the cleft and Tyr-338. Also, Phe-418 sits at the neck of the cleft, lending a bend to the volume enclosed by the cleft. All mutations of Phe-61, Phe-312, and Phe-418 result in severely impaired or inactive enzyme. However, mutation of Phe-526 and Tyr-338, like Phe-103, decreases 11-cis-retinol formation, whereas increasing the 13-cis isomer. Significantly, 2 of these 3 residues, Phe-103 and Tyr-338, are located on putatively mobile interstrand loops. We propose that residual densities located in the binding cleft of the RPE65 structure represents a post-cleavage snapshot consistent not only with a fatty acid product, as originally modeled, but also an 11-cis-retinol product. Substrate docking simulations permit 11-cis- or 13-cis-retinyl ester binding in this relatively closed cleft, with the latter favored in F103L, F526A, and Y338A mutant structures, but prohibit binding of all-trans-retinyl ester, suggesting that isomerization occurs early in the temporal sequence, with O-alkyl ester cleavage occurring later. These findings provide insight into the mechanism of isomerization central to the visual cycle.  相似文献   

19.
Harderian glands from control albino mice kept in a cyclical light/dark environment had tubulo-alveoli comprised of lipid-filled glandular epithelial cells. The porphyrin content of the gland measured 122 μg/100 mg gland. Constant light exposure for 24 hr caused exopthalmos grossly. Histologically most of the secretory cells were swollen and the lumens of many tubulo-alveoli were obliterated; a few areas of the gland showed damage. The porphyrin content had decreased to 116 μg/100 mg gland. After 3 days of constant light exposure the tubulo-alveoli were markedly altered. Lipid and cellular debris filled the lumens, and lining cells were highly irregular, ranging in shape from columnar to squamous. The porphyrin content had decreased to 72 μg/100 mg gland and leukocytes and macrophages were abundant. Despite this extensive damage a number of tubulo-alveolar epithelial cells were observed undergoing mitosis. After 7 days of constant exposure to light, some tubulo-alveolar epithelial cells had undergone squamous metaplasia, and the porphyrin content had dropped markedly to 50 μg/100 mg gland. These pronounced cellular changes are believed to result from a direct effect of light on the gland.  相似文献   

20.
Rare variant alleles in the light of the neutral theory   总被引:2,自引:0,他引:2  
Based on the neutral theory of molecular evolution and polymorphism, and particularly assuming "the model of infinite alleles," a method is proposed which enables us to estimate the fraction of selectively neutral alleles (denoted by Pneut) among newly arisen mutations. It makes use of data on the distribution of rare variant alleles in large samples together with information on the average heterozygosity. The formula proposed is Pneut = [He/(1-He)] [loge(2nq)/n alpha (x less than q)], where n alpha(x less than q) is the average number of rare alleles per locus whose frequency, x, is less than q; n is the average sample size used to count rare alleles; He is the average heterozygosity per locus; and q is a small preassigned number such as q = 0.01. The method was applied to observations on enzyme and other protein loci in plaice, humans (European and Amerindian), Japanese monkeys, and fruit flies. Estimates obtained for them range from 0.064 to 0.21 with the mean and standard error Pneut = 0.14 +/- 0.06. It was pointed out that these estimates are consistent with the corresponding estimate Pneut(Hb) = 0.14 obtained independently based on the neutral theory and using data on the evolutionary rate of nucleotide substitutions in globin pseudogenes together with those in the normal globins.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号