首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-linking of soluble extensin in isolated cell walls   总被引:3,自引:3,他引:0  
The extensin component of primary cell walls has generally been considered to be an intrinsically insoluble cell wall glycoprotein. Recent data have established that cell wall extensin is in fact secreted in a soluble monomeric form which slowly becomes insolubilized in the cell wall probably through the oxidative formation of isodityrosine cross-links. We now show that isolated cell walls from aerated root slices of Daucus carota have the capacity to insolubilize extensin through the formation of isodityrosine. This in vitro cross-linking is specific for the extensin glycoprotein, as other wall proteins are not cross-linked by the isolated wall system. Although extensin can be cross-linked in solution by peroxidase and H2O2, dityrosine and not isodityrosine is the phenolic cross-link formed. Wall-catalyzed cross-linking of soluble extensin is inhibited by l-ascorbate, and both the initial rate and total extent of cross-linking are inhibited by acidic pH in the physiological range (pH 4 to 6). We suggest several mechanisms by which acid might inhibit cross-linking and propose that cytoplasmic factors (ascorbate and/or hydrogen ions) may regulate the solubility of extensin in vivo.  相似文献   

2.
3.
4.
多聚谷氨酰胺(PolyQ)疾病,是一类由编码蛋白质的基因中CAG三核苷酸重复序列的异常延伸所引发的神经退行性疾病.CAG三核苷酸重复序列导致所编码蛋白质的PolyQ序列的异常延伸,使蛋白质发生错误折叠和积聚,并在细胞内形成包涵体.包涵体的形成是神经退行性疾病的一个重要特征.PolyQ蛋白在积聚过程中,可以将细胞内与其特异相互作用的蛋白质或RNA募集到包涵体中.被募集的其他蛋白质或RNA不仅自身的可溶性组分减少,而且由于被"挟持"到包涵体中其在细胞内的有效组分也相应地减少,从而影响其正常的生物功能.根据特异相互作用的模式,我们将募集作用分为以下几种类型:蛋白质(含Poly Q蛋白)的共积聚;特定结构域或模体介导的募集作用(包括泛素等修饰介导的募集作用);RNA介导的募集作用;以及对分子伴侣蛋白的募集作用.PolyQ延伸蛋白的积聚和对其他组分的募集可能是引发细胞毒性和神经退行性病变的重要原因.  相似文献   

5.
Formation of intracellular aggregates is the hallmark of polyglutamine (polyQ) diseases. We analyzed the components of purified nuclear polyQ aggregates by mass spectrometry. As a result, we found that the RNA-binding protein translocated in liposarcoma (TLS) was one of the major components of nuclear polyQ aggregate-interacting proteins in a Huntington disease cell model and was also associated with neuronal intranuclear inclusions of R6/2 mice. In vitro study revealed that TLS could directly bind to truncated N-terminal huntingtin (tNhtt) aggregates but could not bind to monomer GST-tNhtt with 18, 42, or 62Q, indicating that the tNhtt protein acquired the ability to sequester TLS after forming aggregates. Thioflavin T assay and electron microscopic study further supported the idea that TLS bound to tNhtt-42Q aggregates at the early stage of tNhtt-42Q amyloid formation. Immunohistochemistry showed that TLS was associated with neuronal intranuclear inclusions of Huntington disease human brain. Because TLS has a variety of functional roles, the sequestration of TLS to polyQ aggregates may play a role in diverse pathological changes in the brains of patients with polyQ diseases.  相似文献   

6.
Abnormal proteins, which escape chaperone-mediated refolding or proteasome-dependent degradation, aggregate and form inclusion bodies (IBs). In several neurodegenerative diseases, such IBs can be formed by proteins with expanded polyglutamine (polyQ) domains (e.g., huntingtin). This work studies the regulation of intracellular IB formation using an NH(2)-terminal fragment of huntingtin with expanded polyQ domain. We demonstrate that the active form of MEKK1, a protein kinase that regulates several stress-activated signaling cascades, stimulates formation of the IBs. This function of MEKK1 requires kinase activity, as the kinase-dead mutant of MEKK1 cannot stimulate this process. Exposure of cells to UV irradiation or cisplatin, both of which activate MEKK1, also augmented the formation of IBs. The polyQ-containing huntingtin fragment exists in cells in two distinct forms: (a) in a discrete soluble complex, and (b) in association with insoluble fraction. MEKK1 strongly stimulated recruitment of polyQ polypeptides into the particulate fraction. Notably, a large portion of the active form of MEKK1 was associated with the insoluble fraction, concentrating in discrete sites, and polyQ-containing IBs always colocalized with them. We suggest that MEKK1 is involved in a process of IB nucleation. MEKK1 also stimulated formation of IBs with two abnormal polypeptides lacking the polyQ domain, indicating that this kinase has a general effect on protein aggregation.  相似文献   

7.
In neurodegenerative diseases caused by extended polyglutamine (polyQ) sequences in proteins, aggregation-prone polyQ proteins accumulate in intraneuronal inclusions. PolyQ proteins can be degraded by lysosomes or proteasomes. Proteasomes are unable to hydrolyze polyQ repeat sequences, and during breakdown of polyQ proteins, they release polyQ repeat fragments for degradation by other cellular enzymes. This study was undertaken to identify the responsible proteases. Lysosomal extracts (unlike cytosolic enzymes) were found to rapidly hydrolyze polyQ sequences in peptides, proteins, or insoluble aggregates. Using specific inhibitors against lysosomal proteases, enzyme-deficient extracts, and pure cathepsins, we identified cathepsins L and Z as the lysosomal cysteine proteases that digest polyQ proteins and peptides. RNAi for cathepsins L and Z in different cell lines and adult mouse muscles confirmed that they are critical in degrading polyQ proteins (expanded huntingtin exon 1) but not other types of aggregation-prone proteins (e.g. mutant SOD1). Therefore, the activities of these two lysosomal cysteine proteases are important in host defense against toxic accumulation of polyQ proteins.  相似文献   

8.
Huntington's disease is a progressive neurodegenerative disorder that is associated with a CAG repeat expansion in the gene encoding huntingtin. We found that a 60-kDa protein was increased in Neuro2a cells expressing the N-terminal portion of huntingtin with expanded polyglutamine. We purified this protein, and, using mass spectrometry, identified it as p62, an ubiquitin-associated domain-containing protein. A specific p62 antibody stained the ubiquitylated polyQ inclusions in expanded polyglutamine-expressing cells, as well as in the brain of the huntingtin exon 1 transgenic mice. Furthermore, the level of p62 protein and mRNA was increased in expanded polyglutamine-expressing cells. We also found that p62 formed aggresome-like inclusions when p62 was increased in normal Neuro2a cells by a proteasome inhibitor. Knock-down of p62 does not affect the formation of aggresomes or polyglutamine inclusions, suggesting that p62 is recruited to the aggresome or inclusions secondary to their formation. These results suggest that p62 may play important roles as a responsive protein to a polyglutamine-induced stress rather than as a cross-linker between ubiquitylated proteins.  相似文献   

9.
In neurodegenerative diseases, pathogenic proteins tend to misfold and form aggregates that are difficult to remove and able to induce excessive endoplasmic reticulum (ER) stress, leading to neuronal injury and apoptosis. Homocysteine-induced endoplasmic reticulum protein (Herp), an E3 ubiquitin ligase, is an important early marker of ER stress and is involved in the ubiquitination and degradation of many neurodegenerative proteins. However, in Huntington’s disease (HD), a typical polyglutamine disease, whether Herp is also involved in the metabolism and degradation of the pathogenic protein, mutant huntingtin, has not been reported. Therefore, we studied the relationship between Herp and N-terminal fragments of huntingtin (HttN-20Q and HttN-160Q). We found that Herp was able to bind to the overexpressed Htt N-terminal, and this interaction was enhanced by expansion of the polyQ fragment. Confocal microscopy demonstrated that Herp was co-localized with the HttN-160Q aggregates in the cytoplasm and tightly surrounded the aggregates. Overexpression of Herp significantly decreased the amount of soluble and insoluble HttN-160Q, promoted its ubiquitination, and inhibited its cytotoxicity. In contrast, knockdown of Herp resulted in more HttN-160Q protein, less ubiquitination, and stronger cytotoxicity. Inhibition of the autophagy-lysosomal pathway (ALP) had no effect on the function of Herp. However, blocking the ubiquitin-proteasome pathway (UPP) inhibited the reduction in soluble HttN-160Q caused by Herp. Interestingly, blocking the UPP did not weaken the ability of Herp to reduce HttN-160Q aggregates. Deletions of the N-terminal of Herp weakened its ability to inhibit HttN-160Q aggregation but did not result in a significant increase in its soluble form. However, loss of the C-terminal led to a significant increase in soluble HttN-160Q, but Herp still maintained the ability to inhibit aggregate formation. We further found that the expression level of Herp was significantly increased in HD animal and cell models. Our findings suggest that Herp is a newly identified huntingtin-interacting protein that is able to reduce the cytotoxicity of mutant huntingtin by inhibiting its aggregation and promoting its degradation. The N-terminal of Herp serves as the molecular chaperone to inhibit protein aggregation, while its C-terminal functions as an E3 ubiquitin ligase to promote the degradation of misfolded proteins through the UPP. Increased expression of Herp in HD models may be a pro-survival mechanism under stress.  相似文献   

10.
TDP-43 and FUS are DNA/RNA binding proteins associated with neuronal inclusions in amyotrophic lateral sclerosis (ALS) patients. Other neurodegenerative diseases are also characterized by neuronal protein aggregates, e.g. Huntington's disease, associated with polyglutamine (polyQ) expansions in the protein huntingtin. Here we discuss our recent paper establishing similarities between aggregates of TDP-43 that have short glutamine and asparagine (Q/N)-rich modules and are soluble in detergents, with those of polyQ and PIN4C that have large Q/N-rich domains and are detergent-insoluble. We also present new, similar data for FUS. Together, we show that like overexpression of polyQ or PIN4C, overexpression of FUS or TDP-43 causes inhibition of the ubiquitin proteasome system (UPS) and toxicity, both of which are mitigated by overexpression of the Hsp40 chaperone Sis1. Also, in all cases toxicity is enhanced by the [PIN+] prion. In addition, we show that the Sis1 mammalian homolog DNAJBI reduces toxicity arising from overexpressed FUS and TDP-43 respectively in human embryonic kidney cells and primary rodent neurons. The common properties of these proteins suggest that heterologous aggregates may enhance the toxicity of a variety of disease-related aggregating proteins, and further that chaperones and the UPS may be key therapeutic targets for diseases characterized by protein inclusions.  相似文献   

11.
Nine neurodegenerative disorders, called polyglutamine (polyQ) diseases, are characterized by the formation of intranuclear amyloid-like aggregates by nine proteins containing a polyQ tract above a threshold length. These insoluble aggregates and/or some of their soluble precursors are thought to play a role in the pathogenesis. The mechanism by which polyQ expansions trigger the aggregation of the relevant proteins remains, however, unclear. In this work, polyQ tracts of different lengths were inserted into a solvent-exposed loop of the β-lactamase BlaP and the effects of these insertions on the properties of BlaP were investigated by a range of biophysical techniques. The insertion of up to 79 glutamines does not modify the structure of BlaP; it does, however, significantly destabilize the enzyme. The extent of destabilization is largely independent of the polyQ length, allowing us to study independently the effects intrinsic to the polyQ length and those related to the structural integrity of BlaP on the aggregating properties of the chimeras. Only chimeras with 55Q and 79Q readily form amyloid-like fibrils; therefore, similarly to the proteins associated with diseases, there is a threshold number of glutamines above which the chimeras aggregate into amyloid-like fibrils. Most importantly, the chimera containing 79Q forms amyloid-like fibrils at the same rate whether BlaP is folded or not, whereas the 55Q chimera aggregates into amyloid-like fibrils only if BlaP is unfolded. The threshold value for amyloid-like fibril formation depends, therefore, on the structural integrity of the β-lactamase moiety and thus on the steric and/or conformational constraints applied to the polyQ tract. These constraints have, however, no significant effect on the propensity of the 79Q tract to trigger fibril formation. These results suggest that the influence of the protein context on the aggregating properties of polyQ disease-associated proteins could be negligible when the latter contain particularly long polyQ tracts.  相似文献   

12.
The aggregation of proteins with expanded polyglutamine (polyQ) tracts is directly relevant to the formation of neuronal intranuclear inclusions in Huntington’s disease. In vitro studies have uncovered the effects of flanking sequences as modulators of the driving forces and mechanisms of polyQ aggregation in sequence segments associated with HD. Specifically, a seventeen-residue amphipathic stretch (N17) that is directly N-terminal to the polyQ tract in huntingtin decreases the overall solubility, destabilizes nonfibrillar aggregates, and accelerates fibril formation. Published results from atomistic simulations showed that the N17 module reduces the frequency of intermolecular association. Our reanalysis of these simulation results demonstrates that the N17 module also reduces interchain entanglements between polyQ domains. These two effects, which are observed on the smallest lengthscales, are incorporated into phenomenological pair potentials and used in coarse-grained Brownian dynamics simulations to investigate their impact on large-scale aggregation. We analyze the results from Brownian dynamics simulations using the framework of diffusion-limited cluster aggregation. When entanglements prevail, which is true in the absence of N17, small spherical clusters and large linear aggregates form on distinct timescales, in accord with in vitro experiments. Conversely, when entanglements are quenched and a barrier to intermolecular associations is introduced, both of which are attributable to N17, the timescales for forming small species and large linear aggregates become similar. Therefore, the combination of a reduction of interchain entanglements through homopolymeric polyQ and barriers to intermolecular associations appears to be sufficient for providing a minimalist phenomenological rationalization of in vitro observations regarding the effects of N17 on polyQ aggregation.  相似文献   

13.
The aggregation of proteins with expanded polyglutamine (polyQ) tracts is directly relevant to the formation of neuronal intranuclear inclusions in Huntington’s disease. In vitro studies have uncovered the effects of flanking sequences as modulators of the driving forces and mechanisms of polyQ aggregation in sequence segments associated with HD. Specifically, a seventeen-residue amphipathic stretch (N17) that is directly N-terminal to the polyQ tract in huntingtin decreases the overall solubility, destabilizes nonfibrillar aggregates, and accelerates fibril formation. Published results from atomistic simulations showed that the N17 module reduces the frequency of intermolecular association. Our reanalysis of these simulation results demonstrates that the N17 module also reduces interchain entanglements between polyQ domains. These two effects, which are observed on the smallest lengthscales, are incorporated into phenomenological pair potentials and used in coarse-grained Brownian dynamics simulations to investigate their impact on large-scale aggregation. We analyze the results from Brownian dynamics simulations using the framework of diffusion-limited cluster aggregation. When entanglements prevail, which is true in the absence of N17, small spherical clusters and large linear aggregates form on distinct timescales, in accord with in vitro experiments. Conversely, when entanglements are quenched and a barrier to intermolecular associations is introduced, both of which are attributable to N17, the timescales for forming small species and large linear aggregates become similar. Therefore, the combination of a reduction of interchain entanglements through homopolymeric polyQ and barriers to intermolecular associations appears to be sufficient for providing a minimalist phenomenological rationalization of in vitro observations regarding the effects of N17 on polyQ aggregation.  相似文献   

14.
M A Kumar  V L Davidson 《Biochemistry》1990,29(22):5299-5304
Two soluble periplasmic redox proteins from Paracoccus denitrificans, the quinoprotein methylamine dehydrogenase and the copper protein amicyanin, form a weakly associated complex that is critical to their physiological function in electron transport [Gray, K. A., Davidson, V. L., & Knaff, D. B. (1988) J. Biol. Chem. 263, 13987-13990]. The specific interactions between methylamine dehydrogenase and amicyanin have been studied by using the water-soluble cross-linking agent 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). Treatment of methylamine dehydrogenase alone with EDC caused no intermolecular cross-linking but did cause intramolecular cross-linking of this alpha 2 beta 2 oligomeric enzyme. The primary product that was formed contained one large and one small subunit. Methylamine dehydrogenase and amicyanin were covalently cross-linked in the presence of EDC to form at least two distinct species, which were identified by nondenaturing polyacrylamide gel electrophoresis (PAGE). The formation of these cross-linked species was dependent on ionic strength, and the ionic strength dependence was much greater at pH 6.5 than at pH 7.5. The effects of pH and ionic strength were different for the different cross-linked products. SDS-PAGE and Western blot analysis of these cross-linked species indicated that the primary site of interaction for amicyanin was the large subunit of methylamine dehydrogenase and that this association could be stabilized by hydrophobic interactions. In light of these results a scheme is proposed for the interaction of amicyanin with methylamine dehydrogenase that is consistent with previous data on the physical, kinetic, and redox properties of this complex.  相似文献   

15.
We tested whether proteins implicated in Huntington's and other polyglutamine (polyQ) expansion diseases can cause axonal transport defects. Reduction of Drosophila huntingtin and expression of proteins containing pathogenic polyQ repeats disrupt axonal transport. Pathogenic polyQ proteins accumulate in axonal and nuclear inclusions, titrate soluble motor proteins, and cause neuronal apoptosis and organismal death. Expression of a cytoplasmic polyQ repeat protein causes adult retinal degeneration, axonal blockages in larval neurons, and larval lethality, but not neuronal apoptosis or nuclear inclusions. A nuclear polyQ repeat protein induces neuronal apoptosis and larval lethality but no axonal blockages. We suggest that pathogenic polyQ proteins cause neuronal dysfunction and organismal death by two non-mutually exclusive mechanisms. One mechanism requires nuclear accumulation and induces apoptosis; the other interferes with axonal transport. Thus, disruption of axonal transport by pathogenic polyQ proteins could contribute to early neuropathology in Huntington's and other polyQ expansion diseases.  相似文献   

16.
Polyglutamine (polyQ) diseases, including Huntington’s disease, result from the aggregation of an abnormally expanded polyQ repeat in the affected protein. The length of the polyQ repeat is essential for the disease’s onset; however, the molecular mechanism of polyQ aggregation is still poorly understood. Controlled conditions and initiation of the aggregation process are prerequisites for the detection of transient intermediate states. We present an attenuated total reflection Fourier-transform infrared spectroscopic approach combined with protein immobilization to study polyQ aggregation dependent on the polyQ length. PolyQ proteins were engineered mimicking the mammalian N-terminus fragment of the Huntingtin protein and containing a polyQ sequence with the number of glutamines below (Q11), close to (Q38), and above (Q56) the disease threshold. A monolayer of the polyQ construct was chemically immobilized on the internal reflection element of the attenuated total reflection cell, and the aggregation was initiated via enzymatic cleavage. Structural changes of the polyQ sequence were monitored by time-resolved infrared difference spectroscopy. We observed faster aggregation kinetics for the longer sequences, and furthermore, we could distinguish β-structured intermediates for the different constructs, allowing us to propose aggregation mechanisms dependent on the repeat length. Q11 forms a β-structured aggregate by intermolecular interaction of stretched monomers, whereas Q38 and Q56 undergo conformational changes to various β-structured intermediates, including intramolecular β-sheets.  相似文献   

17.
In Saccharomyces cerevisae, expanded polyglutamine (polyQ) fragments are assembled into discrete cytosolic aggregates in a process regulated by the molecular chaperones Hsp26, Hsp70, Hsp90, and Hsp104. To better understand how the different chaperones might cooperate during polyQ aggregation, we used sequential immunoprecipitations and mass spectrometry to identify proteins associated with either soluble (Q25) or aggregation-prone (Q103) fragments at both early and later times after induction of their expression. We found that Hsp26, Hsp70, Hsp90, and other chaperones interact with Q103, but not Q25, within the first 2 h. Further, Hsp70 and Hsp90 appear to be partially released from Q103 prior to the maturation of the aggregates and before the recruitment of Hsp104. To test the importance of this seemingly ordered process, we used a chemical probe to artificially enhance Hsp70 binding to Q103. This treatment retained both Hsp70 and Hsp90 on the polyQ fragment and, interestingly, limited subsequent exchange for Hsp26 and Hsp104, resulting in incomplete aggregation. Together, these results suggest that partial release of Hsp70 may be an essential step in the continued processing of expanded polyQ fragments in yeast.  相似文献   

18.
Huntington's disease (HD) is marked by the expansion of a tract of repeated CAG codons in the HD-gene, IT15. Once expressed, the expanded poly Q region of the huntingtin protein (Htt), which is normally soluble, becomes insoluble, leading to the formation of intracellular inclusions and ultimately to neuronal degeneration. Interruption of the pure poly Q tract at the genetic level should undermine the transition from Htt solubility to Htt insolubility. Modified single-stranded oligonucleotides were used to direct the nucleotide exchange of an A residue to a T residue in the second codon of the HD-gene, resulting in the creation of a leucine residue among the poly Q tract. Consistent with results from other groups, we provide evidence that short synthetic DNA molecules can modify the HD-gene directly, preliminarily offering a potential therapeutic approach to Huntington's disease.  相似文献   

19.
Fragments of proteins containing an expanded polyglutamine (polyQ) tract are thought to initiate aggregation and toxicity in at least nine neurodegenerative diseases, including Huntington''s disease. Because proteasomes appear unable to digest the polyQ tract, which can initiate intracellular protein aggregation, preventing polyQ peptide aggregation by chaperones should greatly improve polyQ clearance and prevent aggregate formation. Here we expressed polyQ peptides in cells and show that their intracellular aggregation is prevented by DNAJB6 and DNAJB8, members of the DNAJ (Hsp40) chaperone family. In contrast, HSPA/Hsp70 and DNAJB1, also members of the DNAJ chaperone family, did not prevent peptide-initiated aggregation. Intriguingly, DNAJB6 and DNAJB8 also affected the soluble levels of polyQ peptides, indicating that DNAJB6 and DNAJB8 inhibit polyQ peptide aggregation directly. Together with recent data showing that purified DNAJB6 can suppress fibrillation of polyQ peptides far more efficiently than polyQ expanded protein fragments in vitro, we conclude that the mechanism of DNAJB6 and DNAJB8 is suppression of polyQ protein aggregation by directly binding the polyQ tract.  相似文献   

20.
Abstract Several neurodegenerative diseases, including Kennedy's disease (KD), are associated with misfolding and aggregation of polyglutamine (polyQ)-expansion proteins. KD is caused by a polyQ-expansion in the androgen receptor (AR), a key player in male sexual differentiation. Interestingly, KD patients often show signs of mild-to-moderate androgen insensitivity syndrome (AIS) resulting from AR dysfunction. Here, we used the yeast Saccharomyces cerevisiae to investigate the molecular mechanism behind AIS in KD. Upon expression in yeast, polyQ-expanded N-terminal fragments of AR lacking the hormone binding domain caused a polyQ length-dependent growth defect. Interestingly, while AR fragments with 67 Q formed large, SDS-resistant inclusions, the most pronounced toxicity was observed upon expression of 102 Q fragments which accumulated exclusively as soluble oligomers in the 100-600 kDa range. Analysis using a hormone-dependent luciferase reporter revealed that full-length polyQ-expanded AR is fully functional in transactivation, but becomes inactivated in the presence of the corresponding polyQ-expanded N-terminal fragment. Furthermore, the greatest impairment of AR activity was observed upon interaction of full-length AR with soluble AR fragments. Taken together, our results suggest that soluble polyQ-containing fragments bind to full-length AR and inactivate it, thus providing insight into the mechanism behind AIS in KD and possibly other polyglutamine diseases, such as Huntington's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号