首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C. S. Kim  J. R. Preer-Jr    B. Polisky 《Genetics》1994,136(4):1325-1328
The non-Mendelian mutant d48 of Paramecium tetraurelia contains micronuclear wild type A genes, but at autogamy and conjugation proper processing fails and new macronuclei lack A genes. When cloned A genes are injected into the macronucleus of d48, proper processing is restored at the next autogamy; d48 is rescued, becoming permanently wild type. In the present study we have injected portions of the A gene into d48. We find that the ability to rescue extends over a large portion of the gene, with highest activity near a series of 221-bp repeat units in the middle of the gene. Regions outside the A gene are inactive.  相似文献   

2.
3.
Mutant strain d48 of Paramecium tetraurelia lacks the gene for antigen A in the macronucleus, whereas this gene is present in the micronucleus. Transfer of macronucleoplasm from the wild type to strain d48 caused d48 to revert to the wild type after autogamy. Transfer of cytoplasm was not as effective as transfer of macronucleoplasm. It was also found that the micronucleus of d48 developed normally when it was transplanted to wild-type cells, whereas the micronucleus of the wild type formed a macronucleus that lacked the antigen A gene when this micronucleus was transplanted into d48. It was concluded that the micronucleus of d48 has a normal antigen A gene and that the hereditary determinants responsible for the d48 trait are located in the macronucleus. Molecular analysis of d48 clones that had been induced to revert to the wild type revealed that they possessed the antigen A gene in the macronucleus.  相似文献   

4.
Macronuclear karyoplasm was transplanted from pre-autogamous donor cells (clonal age, 22 fissions) into the macronucleus of young recipient cells (2 fissions after autogamy occurred) by means of microinjection. A reciprocal experiment was carried out by injecting karyoplasm from young clonal age donors into pre-autogamous recipients. In the case of karyoplasm transfer from pre-autogamous donors to young recipients, autogamy occurred early in 67% of injected cells, whereas reciprocal injections had no influence on the onset of autogamy, and all of the injected cells underwent autogamy. Such results indicate a distinct role of pre-autogamous cells of macronucleus in the induction of autogamy.  相似文献   

5.
Y. You  J. Scott    J. Forney 《Genetics》1994,136(4):1319-1324
The Paramecium tetraurelia mutant called d48 has a complete copy of the A surface protein gene in its micronuclei, but lacks the A gene in the macronucleus. Previous experiments have shown that microinjection of a plasmid containing the entire A gene or a large portion of the gene into the macronucleus of d48 rescued the cell line after formation of a new macronucleus (autogamy). Here we show that several different regions of the A gene can rescue d48, but 100% of the activity cannot be localized to a single, defined region. Inversion of a sequence contained within an A gene plasmid had no measurable effect on rescue efficiency and co-injection of two different plasmids results in enhancement of rescue activity despite the non-contiguous form of the DNA sequences. Both these results suggest that no specific product (RNA or protein) with defined end points is made from the rescuing fragment. A unique restriction site was created in the A gene and used to demonstrate that the injected DNA does not serve as a direct template for the synthesis of the new macronuclear DNA. Models to explain the action of the injected DNA are discussed.  相似文献   

6.
ABSTRACT. Mutant strain d48 and d12 cannot express serotype A. In d48, the A i-antigen gene is present in the micronucleus, but not in the macronucleus. It has recently been shown that d12 contains the A gene in its micronucleus, but its macronucleus lacks the gene. Micronuclear transplantations into enucleated cells were performed to analyze those mutants. Reciprocal transplantation between wild type and d48 confirmed that d48 contains the A gene in the micronucleus and its cytoplasm is defective. Wild type 51 enucleated cells into which were transplanted d12 micronuclei could not express A. Amiccronucleate d12 cells into which were transplanted normal micronuclei from 51 or d48 showed no expression of A. These results show that even if the micronucleus of d12 contains the A gene, it must be abnormal, and its cytoplasm is also defective the same as d48. Genetic analysis showed that heterozygote of d12 and wild type 51 or d48 caused a cure of the cytoplasmic defect of d48 and d12 during the development of macronuclei.  相似文献   

7.
Paramecium tetraurelia can be transformed by microinjection of cloned serotype A gene sequences into the macronucleus. Transformants are detected by their ability to express serotype A surface antigen from the injected templates. After injection, the DNA is converted from a supercoiled form to a linear form by cleavage at nonrandom sites. The linear form appears to replicate autonomously as a unit-length molecule and is present in transformants at high copy number. The injected DNA is further processed by the addition of paramecium-type telomeric sequences to the termini of the linear DNA. To examine the fate of injected linear DNA molecules, plasmid pSA14SB DNA containing the A gene was cleaved into two linear pieces, a 14-kilobase (kb) piece containing the A gene and flanking sequences and a 2.2-kb piece consisting of the procaryotic vector. In transformants expressing the A gene, we observed that two linear DNA species were present which correspond to the two species injected. Both species had Paramecium telomerelike sequences added to their termini. For the 2.2-kb DNA, we show that the site of addition of the telomerelike sequences is directly at one terminus and within one nucleotide of the other terminus. These results indicate that injected procaryotic DNA is capable of autonomous replication in Paramecium macronuclei and that telomeric addition in the macronucleus does not require specific recognition sequences.  相似文献   

8.
A previously isolated mutant cell line called d48 contains a complete copy of the A surface antigen gene in the micronuclear genome, but the gene is not incorporated into the macronucleus. Previous experiments have shown that a cytoplasmic factor made in the wild-type macronucleus can rescue the mutant. Recently, S. Koizumi and S. Kobayashi (Mol. Cell. Biol. 9:4398-4401, 1989) observed that injection of a plasmid containing the A gene into the d48 macronucleus rescued the cell line after autogamy. It is shown here that an 8.8-kb EcoRI fragment containing only a portion of the A gene coding region is sufficient for the rescue of d48. The inability of other A gene fragments to rescue the mutant shows that this effect is dependent upon specific Paramecium DNA sequences. Rescue results in restoration of the wild-type DNA restriction pattern in the macronucleus. These results are consistent with a model in which the macronuclear A locus normally makes an additional gene product that is required for correct processing of the micronuclear copy of the A gene.  相似文献   

9.
The micronucleus from vegetative cells of one mating type (O or E) in Paramecium tetraurelia was transplanted by micropipet into amicronucleate cells of opposite mating type (E or O). When autogamy was induced in the recipient cells, they developed new macronuclei and micronuclei derived from the transplanted micronucleus and usually expressed the same mating type as the recipients. The results indicate that micronuclei in the asexual phase may be undetermined for mating type. Recipient E cells in which the macronucleus had been previously removed were transplanted with a whole macronucleus from an O cell. Their mating type was soon transformed E to O before the occurrence of autogamy, and remained O after autogamy. This demonstrates that the transplanted macronucleus determined the O cytoplasmic state to determine the developing zygotic macronucleus for mating type O. It is unlikely that the micronucleus is determined for mating type in O or E cell during the asexual cycle.  相似文献   

10.
A portion of the macronucleus of wild-type cells of Paramecium tetraurelia was removed and was injected into cells homozygous for the ftA mutation. The ftA mutants make defective trichocysts and are unable to perform normal trichocyst exocytosis. After injection, approx. 30% of the surviving cells show a phenotype shift from mutant to wild-type. This shift is stable during subsequent vegetative growth until clonal death. If, however, the hybrid cell lines are brought to autogamy (which discards the existing macronucleus and forms a new one from sexual products derived from a micronucleus), then the lines revert to the ftA phenotype. Since micronuclei were not transplanted, the phenotypic reversion after autogamy is to be expected, and demonstrates that the transformation affects the macronucleus only. A second series of injections involved transfer of a portion of the macronucleus from cells homozygous for the trichocyst ptA mutation into ftA host cells. These two mutations are genetically complementary, so the injection should be genetically equivalent to forming a double heterozygote. Approx. 20% of the injection survivors shift to wild-type. This shift is also vegetatively stable unless autogamy occurs; after autogamy, reversion to the ftA phenotype is seen. These results show that a portion of a macronucleus can be successfully transplanted from one cell to another and that, in the host cytoplasmic environment, normal gene expression and replication of a transplanted macronucleus does occur. The technique of macronuclear transplantation is significant to studies of the macronuclear contribution to clonal aging, and to studies on genetic control over trichocyst development.  相似文献   

11.
12.
Koizumi S  Kobayashi S 《Genetics》1984,107(3):367-373
The unique feature of the "B system" of mating-type determination found in Paramecium tetraurelia is the existence of a cytoplasmic difference between odd (O) and even (E) cells created and maintained by the action of their macronuclei. Thus far, the presence of a determining factor that controls the differentiation of the developing zygotic macronucleus for O mating type has not been verified. Results of crosses between cells of differing clonal age and complementary mating type suggest that, for one to two fissions after autogamy, O cells produce some factor that determines the gametic nucleus (micronucleus) as mating type O. Direct evidence for the production of O-determining factor by the young O macronucleus was obtained by transplanting young O macronuclear karyoplasm (a part of the macronucleus) into E cells: 32-35% of E exautogamous clones transformed to O; transformation of E exautogamous clones to O reached as high as 72% by transfer of young O macronuclear karyoplasm from a conjugant, 3-4 hr after mixing. This indicates that O determinants produced by the O macronucleus can also act during the sensitive period of development of the new macronucleus. These O-determining factors may be produced or activated at the sexual stage and then decrease in activity in subsequent fissions after new macronuclear reorganization.  相似文献   

13.
Macronuclear chromatin from vegetative cells of one mating type (O, or E) in Paramecium tetraurelia was transferred by micropipetting into the macronucleus of vegetative cells of the opposite mating type (E, or O). A few percent (<5%) of the recipient cells gave rise to, by asexual propagation, progenies amongst which some were found to have transformed their mating type in accordance with the donor chromatin. This demonstrates the transformation of mating type during asexual propagation of the cells. In the case of E chromatin transfer to O recipients, many asexual progenies of the recipients transformed from O to E mating type nevertheless remained O after one sexual cycle. Such results indicate two distinctive macronuclear activities in mating type determination: one determining mating type of vegetative cells and the other influencing the differentiation of the developing post-zygotic macronucleus for mating type. The results are interpreted by the hypothesis that the quantity of E macronuclear chromatin required for differentiation of the developing post-zygotic macronucleus from mating type is larger than required for mating type determination in vegetative cells.  相似文献   

14.
以YCplac系列带Trp、His和Ura标志基因的载体为骨架构建含野生型和经羟胺处理的突变型的啤酒酵母RAD24基因质粒,用质粒替换方法分离RAD24基因温度敏感突变株(rad24-ts3).紫外生存试验发现,rad24-ts3对紫外线敏感;同位素(3H-TdR,3H-UR,3H-Leu)参入试验表明,该突变株DNA、RNA及蛋白质合成均较野生型明显降低.  相似文献   

15.
Functional analysis of cloned genes often makes use of complementation after introducing these genes into cells of a mutant strain. Problems with this self-cloning step in the cyanobacterium Anacystis nidulans R2 have been encountered, which were mainly due to recombinational instability of gene and vector after transformation. Therefore, conditions determining the exchange of material between chromosome, insert and plasmids were studied to achieve the necessary stability. The fate of plasmid pME1, containing a wild-type methionine gene from A. nidulans R2, was investigated after its introduction into a Tn901-induced methionine mutant strain as recipient, so that the mutant chromosomal gene could be distinguished from the plasmid-borne wild-type copy. Two different recipients were constructed, one containing and one lacking the resident plasmid pCH1, which is a derivative of the indigenous small plasmid pUH24. When using the pCH1-free strain and with combined selection for both wild-type gene and vector, the original configuration of the genes in chromosome and vector was retained in the majority of the transformed cells, while the remaining transformants were reciprocal recombinants; under conditions of single selection mainly nonreciprocal recombination or loss of the vector was observed. When the recipient strain contained pCH1 additional recombinational events took place. The results show that under appropriate conditions a chromosomal gene cloned on a plasmid vector can be stably maintained in a majority of the transformants, thus making self-cloning experiments feasible in A. nidulans R2. On the other hand, the introduction of foreign DNA into the chromosome can be achieved by deliberately exploiting recombination between chromosome and plasmid.  相似文献   

16.
17.
We have characterized Neurospora crassa transformants obtained with plasmid pJR2, which consists of the Neurospora glutamate dehydrogenase (am) gene cloned in pUC8 and an am132 host strain which contains a deletion encompassing the cloned fragment. Every one of 33 transformants tested showed extreme meiotic instability: less than 1 or 2% am+ progeny were obtained in initial or successive backcrosses between am+ transformants and am132 or in intercrosses between am+ progeny. Furthermore, am+ progeny from backcrosses gave a high proportion of auxotrophic (am) mitotic segregants during vegetative growth. These results indicate that the am+ character is not stably integrated into chromosomal DNA in any of the transformants tested. Nuclear DNAs from six transformants were analyzed by Southern hybridization. All six transformants contained sequences homologous to pJR2. Four showed restriction fragments expected for unmodified pJR2, but most showed additional bands. Southern blots of undigested DNAs showed that the plasmid sequences are present predominantly in high-molecular-weight form (larger than 20 kilobases). Southern blots showed that auxotrophic (am) progeny from a backcross to am132 had lost restriction bands corresponding to free plasmid but retained additional bands, apparently integrated into chromosomal DNA in a nonfunctional manner. Considered together, these results are most reasonably interpreted as follows: recombinant plasmids containing the am+ gene can replicate autonomously in N. crassa, the free plasmids are present in oligomeric or modified form or both, and plasmid sequences also integrate at multiple sites in the deletion host but in a nonfunctional manner. An alternate interpretation--that tandem repeats of the plasmid are integrated into chromosomal DNA but eliminated during meiosis--cannot be completely excluded. However, stable integration of the am gene can be obtained under a variety of other conditions, viz., using the am gene cloned in a phage lambda vector (J. A. Kinsey and J. A. Rambosek, Mol. Cell. Biol. 4:117-122, 1984), using derivatives of pJR2, or using pJR2 to transform a frameshift mutant.  相似文献   

18.
chiA基因在稻根联合固氮菌E26和NG13中的表达   总被引:4,自引:0,他引:4  
将带有粘质沙雷氏菌几丁质酶基因 (chiA)的 1 8kbHinfⅠ片段分别克隆到表达载体pKK2 2 3 3和质粒pMC71A上 ,构建成几丁质酶表达质粒pKChiA和pMChiA。将这 2种质粒转化稻根联合固氮菌阴沟肠杆菌E2 6 (EnterobactercloacaeE2 6 )和催娩克氏菌NG1 3 (Klebsiellaoxy tocaNG1 3 ) ,chiA基因在这 2菌株中获得高效表达。对表达产物的细胞定位测定表明 ,几丁质酶不仅存在于细胞周间质和胞内 ,而且还分泌到培养物上清液中。在对数生长后期 ,胞外、胞间质和胞内的几丁质酶活性分布分别为 2 3 %~ 2 8%、45 %~ 5 1 %和 2 1 %~ 3 2 %。经SDS 聚丙烯酰胺凝胶电泳检测表明 ,表达的几丁质酶蛋白分子量为 5 8kD。在受体细胞内 ,质粒pMChiA的稳定性要比质粒pKChiA高。  相似文献   

19.
A pyrithiamine (PT) resistance gene (ptrA) was cloned from a PT resistant mutant of Aspergillus oryzae and was useful as a dominant selectable marker for transformation of all A. oryzae wild type strain as well as A. nidulans. For further study, we examined whether or not ptrA could be used as the transformation marker in other species of filamentous fungi. Two types of plasmid, which contain ptrA as a selectable marker, were constructed, and the transformation experiments were done with them. One is an integrative plasmid, pPTRI, and another is the autonomously replicating plasmid pPTRII, which contains AMA1. PT-resistant transformants were obtained in the cases of A. kawachii, A. terreus, A. fumigatus, and Trichoderma reesei as hosts with pPTRI and pPTRII. Furthermore, a beta-glucuronidase (GUS) gene was introduced into A. kawachii and A. fumigatus using pPTRII. Almost all the transformants turned blue on GUS assay plates. These results indicate that ptrA can also be used for some other filamentous fungi besides A. oryzae and A. nidulans.  相似文献   

20.
Transformation by microinjection of macronucleoplasm in Paramecium caudatum was investigated. Macronucleoplasm with three genetic markers (behavior, trichocyst, and mating type) was injected into the macronucleus. To facilitate microinjection, in most cases, paramecia were immobilized in a gelatin (7.5%) solution. The injected cells began to express a dominant gene (cnrA+ or cnrB+) of the donor 9-24 hr after injection. Expression did not require cell division suggesting injected macronucleoplasm was capable of expressing a phenotype. The amount of injected macronucleoplasm appears to correlate with the frequency of successful expression but not to correlate with the time required for expression. After a number of fissions, the injected cells produced clones which had cells expressing the phenotype of the donor. This suggests that injected macronucleoplasm was replicated and expressed in the recipient cell lines. The transformed clones were classified into two groups. In one group, transformation was stable. All cell lines derived from the injected cells expressed a phenotype similar to the heterozygote of donor and recipient cells. In the other group, transformation was unstable. During the first five to seven fissions after injection, at each division, cells produced one daughter cell which later reverted to the recipient phenotype. After this unstable period, cells no longer produced the recipient phenotype but produced the donor phenotype exclusively. Donor and recipient phenotypes were, thus, segregated in different cell lines. Observation of genetic markers and analysis by computer simulation shed light on the mode of transmission of injected macronucleoplasm. In stable transformation, injected macronucleoplasm appears to be distributed equally to daughter cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号