首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geometry of replicative form (RF) DNA synthesis of the H-1 parvovirus was studied with the electron microscope using formamide or aqueous variations of the Kleinschmidt spreading procedure. H-1 DNA was isolated from human or hamster cells infected with a temperature-sensitive mutant, ts1, which is deficient in progeny single-stranded DNA synthesis at the restrictive temperature (S.L. Rhode, 1976), thus minimizing possible confusion between RF and progeny DNA replicative intermediates (RIs). The purity of the isolated H-1 DNA, as determined by gel electrophoresis, ethidium bromide staining, autoadiography, and digestion with endo R-EcoRI, was high. H-1 RF DNA'S WERE LINEAR DOUBLE-STRANDED MOLECULES, 1.53 MUM IN LENGTH. H-1 RIs of RF DNA replication were double-stranded, Y-shaped molecules, with the same length as RF DNAs. The replication origin was localized no more than 0.15 genome lengths from one end of the RF DNA, with replication proceeding toward the other end at a uniform rate. Similar RF and RI molecules of dimer size were also observed. The length of H-1 single-stranded DNA extracted from purified virions was measured relative to that of phiX174 and it had a very similar contour length, so that the molecular weight of H-1 single-stranded DNA would be at least 1.48 X 10(6) to 1.59 X 10(6) (Berkowitz and Day, 1974).  相似文献   

2.
Replication of the single-stranded DNA parvovirus H-1 involves the synthesis of a double-stranded DNA replicative form (RF). In this study, the metabolism of RF DNA was examined in parasynchronous hamster embryo cells. The initiation of RF DNA replication was found to occur late in S phase, as was the synthesis of the DNA upon which subsequent viral hemagglutinin synthesis is dependent. Evidence is presented which indicates that initiation of RF replication requires proteins synthesized in late S phase, but that concomittant protein synthesis is not required for the continuation of RF replication. The data also suggest a requirement for viral protein(s) for progeny strand synthesis. Incorporation of 5-bromo-2'-deoxyuridine (BUdR) into viral DNA resulted in an "all-or-none" inhibition of viral hemagglutinin and viral antigen synthesis. BUdR inactivation of viral protein function was used to explore the time of synthesis of viral DNA serving as template for viral RNA synthesis and the effect of viral protein on RF replication and progeny strand synthesis. Results of this study suggest that parental RF DNA is synthesized shortly after infection, and that viral mRNA is transcribed from only a few copies of the viral genome in each cell. They also support the conclusion that viral protein is inhibitory to RF DNA replication. Density labeling of RF DNA with BUdR, allowing separation of viral strand DNA (V) from viral complementary strand (C), provided additional data in support of the above findings.  相似文献   

3.
Process of attachment of phi X174 parental DNA to the host cell membrane   总被引:2,自引:0,他引:2  
The phi X174-DNA membrane complex was isolated from Escherichia coli infected with phi X174 am3 by isopycnic sucrose gradient centrifugation followed by zone electrophoresis. The phi X174 DNA-membrane complex banded at two positions, intermediate density membrane fraction and cytoplasmic membrane fraction, having bouyant densities of 1.195 and 1.150 g/ml, respectively. Immediately after infection with phi X147, replicating DNA was pulse-labeled and then the incorporated label was chased. The radioactivity initially recovered in the intermediate density membrane fraction migrated to the cytoplasmic membrane fraction. The DNAs from both complexes sedimented mainly at the position of parental replicative form I (RFI). The phi X174 DNA-membrane complex contained a speficic membrane-bound protein having a molecular weigth of 80,000 which is accumulated in the host DNA-membrane complex. These results suggest that when phi X174 DNA penetrated into cells in the early phase of infection, single-stranded circular DNA was converted to parental RFI at a wall/membrane adhesion region and migrated to the cytoplasmic membrane fraction, where the parental RF could serve as a template in the replication of progeny RF.  相似文献   

4.
An extract prepared from Escherichia coli cells infected with phi chi 174 bacteriophage was capable of incorporating dTTP into phage-specific DNAs in vitro. The synthesized DNAs were associated with proteins and sedimented with S values of 20, 50, and 90 in a sucrose gradient sedimentation. DNA isolated from 20S material was open circular replicative form (RF), DNA in 50S material was replicative-form DNA with an extended single-stranded viral DNA that ranged up to one genome in length, and DNA in 90S material consisted of circular and linear single-stranded viral DNA of full genome length and single-stranded viral DNA shorter than full genome length. Pulse and pulse-chase experiments indicated that 90S material derived from 50S material.  相似文献   

5.
We have studied the replication of φX174 DNA in Escherichia coli infected with various amber mutants (cistrons I to VII) of φX. Previous research showing that some of these mutants are able to form replicative form (RF) DNA but are unable to produce net amounts of viral progeny single-stranded DNA has been confirmed and extended. Evidence is presented that a defect in any one of four viral cistrons prevents the asymmetric replication of the RF to produce progeny viral DNA. At least four virus-coded proteins, three of which are part of the mature virion, must be present before single-stranded DNA synthesis can even be initiated; the possibility that single-stranded DNA is made and then degraded or converted to RF is eliminated. Mutants in one cistron (II) do permit the asymmetric replication of RF at late times, but the displaced viral strand is incorporated into a defective particle and subsequently may be partially degraded. Both RFI (superhelix) and RFII are present in roughly comparable amounts throughout the normal latent period in infections with wild-type phage or any of the phage mutants.  相似文献   

6.
Chloramphenicol affects several steps in the DNA replication of mycoplasma virus L51, a noncytocidal, naked, bullet-shaped virion containing circular single-stranded (SS) DNA of 1.5 X 10(6) daltons (4.5 kilobases). In the presence of chloramphenicol, adsorption was normal and parental SS DNA was converted to double-stranded replicative forms (RF), but subsequent RF leads to RF replication was inhibited. Chloramphenicol added late in infection, when most viral nascent DNA is in progeny SS molecules, inhibited SS synthesis, but nascent RF molecules were formed. However, a chase experiment showed that these RF molecules could not be converted to SS DNA. Therefore, viral RF molecules made in the presence of chloramphenicol are not functional as SS DNA precursors.  相似文献   

7.
Bacteriophage phiX174 DNA replication was examined in temperature-sensitive dnaB mutants of Escherichia coli C to determine which stages require the participation of the product of this host gene. The conversion of the infecting phage single-stranded DNA to the double-stranded replicative form (parental RF synthesis) is completely inhibited at the nonpermissive temperature (41 C) in two of the three dnaB mutants tested. The efficiency of phage eclipse and of phage DNA penetration of these mutant host cells at 41 C is the same as that of the parent host strain. The defect is most likely in the synthesis of the complementary strand DNA. The semiconservative replication of the double-stranded replicative form DNA (RF replication) is inhibited in all three host mutants after shifting from 30 to 41 C. Late in infection, the rate of progeny single-stranded phage DNA synthesis increases following shifts from 30 to 41 C. Approximately the same amounts of phage DNA and of infectious phage particles are made following the shift to 41 C as in the control left at 30 C. The simplest interpretation of our data is that the product of the host dnaB gene is required for phiX174 parental RF synthesis and RF replication, but is not directly involved in phage single-stranded DNA synthesis once it has begun. The possible significance of the synthesis of parental RF DNA at 41 C in one of the three mutants is discussed.  相似文献   

8.
9.
Many plasmids from gram-positive bacteria replicate via a single-stranded deoxyribonucleic acid (ssDNA) intermediate, most probably by a rolling-circle mechanism (these plasmids are referred to in this paper as ssDNA plasmids). Their plus and minus origins are physically separated, and replicative initiations are not simultaneous; it is this feature that allows visualization of ssDNA replication intermediates. The insertion of foreign DNA into an ssDNA plasmid may provoke a high frequency of deletions, changes of replicative products to high-molecular-weight forms, segregational loss, and decreased plasmid copy numbers. When an ssDNA plasmid is inserted into the chromosome, both deletions and amplifications may be induced. Both the mode of replication and the copy control mechanism affect the fate of inserted foreign material, usually selecting for its loss. Thus, after having tasted various morsels of DNA, the resulting plasmid stays trim. The features of the ssDNA plasmids seem to be beneficial for their viability and propagation, but not for their use as cloning vectors. However, plasmids replicating via ssDNA intermediates are being exploited to yield insights into the mechanisms of recombination and amplification.  相似文献   

10.
Escherichia coli NY73, possessing a temperature-sensitive mutation in the dnaG locus, was rendered sensitive to bacteriophage phiX174 by P1 transduction. phiX174 reproduces in this strain at 30 C but not at 40 C. All three stages of phiX174 replication, parental replicative form (RF) synthesis, RF replication, and progeny single-stranded DNA synthesis, are thermolabile in this mutant. Competition-annealing data show that both plus- and minus-strand synthesis are equally inhibited after shift up to 40 C during RF replication. We conclude that the dnaG gene product is required for the synthesis of both strands of phiX RF during RF replication and of the complementary strand and viral progeny strands during stages I and III, respectively.  相似文献   

11.
Since parvoviruses apparently do not possess a DNA polymerase activity, one or more of the host cell DNA polymerases must be responsible for replicating the single-stranded DNA genome. We have focused on determining which polymerase, alpha, beta, or gamma (pol alpha, pol beta, or pol gamma, respectively), is responsible for the first step in bovine parvoviral DNA replication: conversion of the single-stranded DNA genome to a parental replicative form (RF). In this study, we used aphidicolin, a specific inhibitor of DNA pol alpha, to assay for the requirement of pol alpha activity in parental RF formation in vivo. Synchronized cell cultures were infected with bovine parvovirus with or without aphidicolin, and the products of viral replication were separated on agarose gels and identified by Southern blot analysis. We found that complete inhibition of viral DNA synthesis resulted when 20 microM aphidicolin was present throughout the infection. In addition, viral DNA synthesis was inhibited by as little as 1 microM aphidicolin, whereas lower concentrations (0.1 and 0.01 microM) resulted in partial inhibition of the replication process. Using 32P-labeled bovine parvovirus as the input virus we differentiated parental RF from daughter RF and progeny DNA synthesis. We conclude that DNA pol alpha is required for the production of RF during bovine parvovirus replication in vivo and that this requirement is most likely for the conversion of bovine parvovirus input single-stranded DNA to parental RF. These results do not rule out a possible role for DNA pol gamma in the first step, nor do they rule out a role for pol alpha or pol gamma in later stages of the replication cycle.  相似文献   

12.
Each of the stages in the replication of ØX174 DNA in vitro, e. g., conversion of circular single stranded parental DNA to the duplex replicative form (SS → RF), replication of the closed circular duplex form (RF → RF), and synthesis of circular single stranded progeny DNA (RF →SS), may be affected by a reduced level of dUTPase. Thus, in enzyme preparations from mutant strains defective in dUTPase (dut?), the complementary strand synthesized in the SS → RF reaction is abnormally short (7–8S vs. 14S), and the extent of RF replication is decreased 10-fold. Preferential removal of dUTPase during fractionation of enzyme preparations from wild type (dut+) cells may produce comparable effects. In particular, the single stranded circular DNA synthesized in the RF → SS reaction by a set of highly purified enzymes is rapidly degraded upon incubation with the less pure enzymes required for its conversion to RF. All of these effects are plausibly accounted for by the incorporation into DNA of uracil from dUTP, possibly present as a contaminant in one or more components of the reaction, followed by excision of the uracil and phosphodiester bond cleavage at the resulting apyrimidinic site.  相似文献   

13.
Mutation in several different cistrons of bacteriophage phi chi 174 blocks net progeny single-stranded DNA synthesis at the late period of infection (15). For the study of the functions of these cistrons in single-stranded DNA synthesis, asymmetric replication of replicative form DNA was examined at the late period of infection with amber mutants of these cistrons. While the normal, rapid process of asymmetric single-stranded viral DNA synthesis is blocked at the late period of these mutant infections, an asymmetric synthesis of the viral strand of replicative-form DNA is observed in this period, though at a reduced level, together with degradation of prelabeled viral strand. Some intermediate replicative-form molecules were also detected. Asymmetric synthesis of the viral strand of replicative-form DNA at the late period of phi chi infection is completely inhibited in the presence of a low concentration (35mug/ml) of chloramphenicol (which also blocks net single-stranded viral DNA synthesis). These results are discussed in terms of the possible role of the specific viral proteins for normal single-stranded DNA synthesis.  相似文献   

14.
15.
16.
Host functions required for replication of progeny double-stranded DNA of bacteriophage G4 were examined by using metabolic inhibitors and Escherichia coli dna mutants. In dna+ bacteria, synthesis of the progeny replicative form (RF) was relatively resistant to 30 microgram/ml of chloramphenicol, but considerably sensitive to 200 microgram/ml of rifampicin. The RF replication was severely inhibited by 50 microgram/ml of mitomycin C, 50 microgram/ml of nalidixic acid, or 200 microgram/ml of novobiocin. At 41 degrees C, synthesis of G4 progeny RF was distinctly affected in a dnaC(D) mutant and in a dnaG host. The progeny RF replication was prevented at 42 degrees C in a dnaE strain as well as in a dnaB mutant. In a dnaZ strain, the synthetic rate of the progeny RF was markedly reduced at 42 degrees C. At 43 degrees C, the rate of G4 progeny RF synthesis was reduced even in dna+ or dnaA bacteria, but significant amounts of the progeny RF were still synthesized in these hosts at the high temperature. In addition to five dna gene products, host rep function was essential for the RF replication.  相似文献   

17.
The ribonucleic acid (RNA)-dependent RNA polymerase induced in the microsomal fraction of cells infected with influenza virus synthesized a mixture of single-and double-stranded RNA in vitro. The single-stranded RNA sedimented mainly in the 8S region on sucrose density gradients, with a smaller proportion of the RNA sedimenting at 18S. This sedimentation pattern corresponds closely to that of incomplete influenza virus RNA. The double-stranded RNA formed in vitro sedimented at 11S, but molecules which may be replicative intermediate, sedimenting at 14 to 20S, were also detected in the in vitro reaction product. Similar species of RNA were detected in vivo by pulse-labeling infected cells at the time of polymerase harvest, but the proportion of each RNA species was different, most of the RNA being single-stranded and sedimenting in the 18S region. An 11S double-stranded RNA was also synthesized in vivo. Pulse chase analysis of the double-stranded RNA synthesized in vitro showed that most is stable, and only a small proportion turns over during the reaction. A proportion of the RNA formed in vitro could be annealed to RNA formed in infected cells and to RNA extracted from purified virus.  相似文献   

18.
Intermediate in adenovirus type 2 replication.   总被引:1,自引:1,他引:0       下载免费PDF全文
Replicating chromosomes, called intermediate DNA, have been extracted from the adenovirus replication complex. Compared to mature molecules, intermediate DNA had a greater buoyant density in CsCl gradients and ethidium bromide-cesium chloride gradients. Digestion of intermediate DNA with S1 endonuclease, but not with RNase, abolished the difference in densities. These properties suggest that replicating molecules contain extensive regions of parental single strands. Although intermediate DNA sedimented faster than marker viral DNA in neutral sucrose gradients, single strands longer than unit length could not be detected after alkaline denaturation. Integral size classes of nascent chains in intermediate DNA suggest a relationship between units of replication and the nucleoprotein structure of the virus chromosome. Adenovirus DNA was replicated at a rate of 0.7 x 10-6 daltons/min. Although newly synthesized molecules had the same sedimentation coefficient and buoyant density as mature chromosomes, they still contained single-strand interruptions. Complete joining of daughter strands required an additional 15 to 20 min.  相似文献   

19.
Formation of progeny viruses in the nuclei of HeLa cells infected with adenovirus type 5 was studied at the ultrastructural level by in situ hybridization techniques allowing specific detection of either viral double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA). Prior to the initiation of replication of viral genomes, infective DNA molecules which entered the nucleus of the target cell were randomly distributed among host chromatin fibers including nucleolus-associated chromatin. They were double-stranded, that is, without single-strand breaks. Such association of viral DNA with host condensed chromatin also occurred in mitosis. The initiation of viral genome replication occurred simultaneously with the appearance in the nucleoplasm of small fibrillar regions containing intermingled viral dsDNA and ssDNA. Later, at the intermediate stage of nuclear transformation, viral dsDNA and ssDNA molecules were almost entirely separated into two contiguous substructures. At this stage, viruses were observed occasionally in the vicinity of viral ssDNA accumulation sites. Still later, an additional substructure developed in the centre of the nucleus which consisted of large quantities of viral dsDNA, traces of viral ssDNA and abundant viruses. Portions of viral ssDNA were attached to some viruses even at late stage of nuclear transformation, an association which strongly suggests the occurrence of encapsidation of at least some of the viral genomes while they are still engaged in replication.  相似文献   

20.
This paper concerns the properties of herpes simplex virus 1 DNA replicating in HEp-2 and human embryonic lung cells. The results were as follows. (i) Only a small fraction of input viral DNA entered the replicative pool. The bulk of the input viral DNA cosedimented with marker viral DNA and did not appear to be degraded or dissociated into L and S components. (ii) Nascent DNA sedimented faster and banded at a higher density than that of mature viral DNA extracted from virions. Pulse-chase experiments indicated that nascent DNA acquires the sedimentation rate and buoyant density of viral DNA within 30 to 40 min after its synthesis. (iii) Electron microscopic studies indicated that the DNA extracted from cells replicating viral DNA and banding at the density of viral DNA contained: (a) linear, full-size molecules with internal gaps and single-stranded regions at termini; (b) molecules with lariats, consisting of a linear segment up to 2x the size of mature DNA and a ring ranging from 0.5 x 10(6) to 100 x 10(6) in molecular weight, showing continuous and discontinuous forks; (c) circular, double-stranded molecules, both full-size and multiples of 18 x 10(6) in molecular weight, but without forks or loops; (d) molecules showing "eye" and "D" loops at or near one end of the DNA; (e) large, tangled masses of DNA, similar to those observed for T4 and pseudorabies virus replicating DNAs, containing loops and continuous and discontinuous forks. The electron micrographs are consistent with the hypothesis that the single-stranded ends on the DNA anneal to form a hairpin, that the DNA synthesis is initiated at or near that end and proceeds bidirectionally to form a lariat, and that resulting progeny derived by semiconservative replication are "head-to-head" and "tail-to-tail" dimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号