首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ergosterol isolated from Phycomyces blakesleeanus grown in the presence of methionine-[methyl-2H3] contained two 2H atoms showing that one 2H atom is lost during transmethylation. Ergosterol isolated from P. blakesleeanus grown in the presence of mevalonic acid-[2-14C,(4R)-4-3H1] had a 14C:3H atomic ratio of 5:3. Chemical degradation of 2,3-dimethylbutanal obtained by ozonolysis of the doubly-labelled ergosterol showed that the 3H atom originally at C-24 of lanosterol is transferred to C-25 of ergosterol during transmethylation. The mechanism of formation of the ergosterol side chain in P. blakesleeanus is presented.  相似文献   

2.
Recently, ergosterol analysis has been used to quantify viable fungal biomass in resynthesized ectomycorrhizae. An objective of our study was to quantify ergosterol in a range of ectomycorrhizal isolates under differing growth conditions. In addition, we tested the applicability of the method on field-collected roots of ectomycorrhizal and vesicular-arbuscular (VA) mycorrhizal plants. Quantification of sitosterol as a biomass indicator of plant roots was also undertaken. Ergosterol was not detected in roots of uninoculated Betula populifolia seedlings, and sitosterol was not detected in an ectomycorrhizal fungal isolate but was present in birch roots. Ergosterol was produced in all isolates examined, which represented the major orders of ectomycorrhizal fungi. The range of values obtained, from 3 to nearly 18 g ergosterol mg-1 dry mass, agrees well with reported values for other mycorrhizal and decomposer fungi. Hyphal ergosterol was the same during growth on phytic acid and KH2PO4. Reduction of growth temperature from 25° C to 15° C had little effect on ergosterol content of cultures harvested at similar growth stages. Ergosterol and sitosterol were detected in field-collected ectomycorrhizae of B. populifolia and Pinus sylvestris and VA mycorrhizae of Acer rubrum and Plantago major. Both ergosterol content and ergosterol to sitosterol ratios were significantly lower in VA mycorrhizae than ectomycorrhizae. Calculations of viable fungal biomass associated with field-collected roots were in agreement with those reported by others using the method on resynthesized ectomycorrhizae. Estimates of total mass could be obtained for field-collected B. populifolia roots by a simultaneously using ergosterol to estimate fungal biomass and sitosterol to estimate root mass. Some potential applications and limitations of sterol quantification in studies of mycorrhizal physiology and ecology are discussed.  相似文献   

3.
Summary

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), superoxide anion (O2?), and hydroxyl radical (OH?) have been implicated in mediating various pathological events such as cancer, atherosclerosis, diabetes, ischemia, inflammatory diseases, and the aging process. The glutathione (GSH) redox cycle and antioxidant enzymes—superoxide dismutase (SOD) and catalase (CAT)—play an important role in scavenging ROS and preventing cell injury. Pycnogenol has been shown to protect endothelial cells against oxidant-induced injury. The present study determined the effects of pycnogenol on cellular metabolism of H2O2 and O2? and on glutathione-dependent and -independent antioxidant enzymes in bovine pulmonary artery endothelial cells (PAEC). Confluent monolayers of PAEC were incubated with pycnogenol, and oxidative stress was triggered by hypoxanthine and xanthine oxidase or H2O2. Pycnogenol caused a concentration-dependent enhancement of H2O2 and O2? clearance. It increased the intracellular GSH content and the activities of GSH peroxidase and GSH disulfide reductase. It also increased the activities of SOD and CAT. The results suggest that pycnogenol promotes a protective antioxidant state by upregulating important enzymatic and nonenzymatic oxidant scavenging systems.  相似文献   

4.
1. The mycelium of Aspergillus fumigatus has been shown to incorporate mevalonate into squalene, ubiquinone, ergosterol and hexahydroprenol. 2. The 3H/14C ratio in ubiquinone, biosynthesized from [2-14C-(4R)-4-3H1]mevalonate, is the same as in the squalene; essentially no 3H was incorporated from [2-14C-(4S)-4-3H1]mevalonate, indicating the biosynthesis of biogenetically trans-isoprene units. 3. The 3H/14C ratio for ergosterol (from `4R-mevalonate') was 3:5, showing that the proton at C-24 is not lost during alkylation of the side chain; it probably migrates to C-25. 4. As 3H from both mevalonates was incorporated into the hexahydroprenols the biosynthesis of both cis- and trans-isoprene units must occur. 5. The saturated ω- and ψ-isoprene units are shown to be biogenetically trans, as are two of the unsaturated residues. 6. The saturated α- and unsaturated β-isoprene residues are both biogenetically cis. 7. An inexplicable loss of approximately half of the olefinic protons from the cis-portion of hexahydroprenol occurs; possible reasons for this loss are discussed. 8. Increase in chain length of the hexahydroprenols is by a cis addition. 9. A biosynthesis of hexahydroprenols by addition of cis-isoprene units to all-trans-geranylgeranyl pyrophosphate, or a dihydro or tetrahydro derivative thereof, is suggested.  相似文献   

5.
Time-dependent yields of the most important products of water radiolysis , OH, H, H3O+, H2, OH and H2O2 have been calculated for 60Co-photons, electrons, protons, helium- and carbon-ions incident onto water. G values have been evaluated for the interval from 1 ps to 1 μs after initial energy deposition as a function of time, as well as after 1 ns and at the end of the chemical stage as a function of linear energy transfer (LET), covering an interval from approximately 0.2 up to 750 keV/μm by means of different particle types. In this work, the modules of the biophysical Monte Carlo track structure code PARTRAC dealing with the simulation of prechemical and chemical stages have been improved to extend interaction data sets for heavier ions. Among other newly selected parameter values, the thermalisation distance between the point of generation and hydration of subexcitation electrons has been adopted from recent data in the literature. As far as data from the literature are available, good agreement has been found with the calculated time- and LET-dependent yields in this work, supporting the selection of the revised parameter values.  相似文献   

6.
Wang W  Gao P 《Biodegradation》2002,13(6):383-394
A special low-molecular-weight peptide named Gt factor, was isolated and purified from the extracellular culture of brown-rot fungi Gloeophyllum trabeum via gel filtration chromatography and HPLC. It has been shown to reduce Fe3+ to Fe2+. Electron paramagnetic resonance (EPR) spectroscopy revealed Gt factor was able to drive H2O2 generation via a superoxide anion O2 .- intermediate and mediate the formation of hydroxyl radical HO. in the presence of O2. All the results indicated that Gt factor could oxidize the cellulose, disrupt the inter- and intrahydrogen bonds in cellulose chains by a HO. -involved mechanism. This resulted in depolymerization of the cellulose, which made it accessible for further enzymatic hydrolysis.  相似文献   

7.
The possible role of hydrogen peroxide in brown-rot decay was investigated by studying the effects of pretreatment of spruce wood and microcrystalline Avicel cellulose with H2O2 and Fe2+ (Fenton's reagent) on the subsequent enzymatic hydrolysis of the substrates. A crude endoglucanase preparation from the brown-rot fungus Poria placenta, a purified endoglucanase from Trichoderma reesei and a commercial Trichoderma cellulase were used as enzymes. Avicel cellulose and spruce dust were depolymerized in the H2O2/Fe2+ treatment. Mainly hemicelluloses were lost in the treatment of spruce dust. The effect of the pretreatment on subsequent enzymatic hydrolysis was found to depend on the nature of the substrate and the enzyme preparation used. Pretreatment with H2O2/Fe2+ clearly increased the amount of enzymatic hydrolysis of spruce dust with both the endoglucanases and the commercial cellulase. In all cases the amount of hydrolysis was increased about threefold. The hydrolysis of Avicel with the endoglucanases was also enhanced, whereas the hydrolysis with the commercial cellulase was decreased. Received: 23 December 1996 / Received revision: 17 April 1997 / Accepted: 19 April 1997  相似文献   

8.
The study presents a mathematical function describing a correlation between the amount of ergosterol and the number of colony-forming units (CFU) of mould contaminating selected building materials such as: a block of cellular concrete, gypsum—carton board and gypsum—carton board covered with emulsion paint. The dependence obtained for a particular material as well as an average dependence for all the investigated materials has been described by means of an exponential equation. It has been found out that there is high, statistically significant correlation between ergosterol content and CFU number of mould in all of the building materials. The correlation coefficients have ranged from r=0.790 to 0.933. The elaborated equation describing the above dependence can be applied to estimate mould contamination by means of culture methods within the range 103–108 CFU/m2 of the surface. In addition, the estimated level of ergosterol in these materials has been shown to be the criterion by which to evaluate the degree of filamentous fungal contamination. It has been assessed that an ergosterol content exceeding the level of 3.96 mg/m2 indicates the active development of mould. This criterion has been applied to evaluate several building materials i.e.: concrete, gypsum board, emulsion coatings, brick, plaster, wallpaper, glass wool, mineral wool and wood. No statistically significant differences have been observed between CFU number of mould calculated from a model equation on the basis of the ergosterol content and CFU number of mould experimentally determined by traditional methods. The results presented in this paper show that the elaborated equation of correlation between the ergosterol content and CFU number of mould can be applied to estimate mould contamination of different building materials, based on the determination of ergosterol.  相似文献   

9.
The lead absorbed by the roots induce oxidative stress conditions through the Reactive oxygen species (ROS) production for the pea plants cultivated hydroponically for 96 h on a Hoagland medium with the addition of 0.1 and 0.5 mM of Pb(NO3)2. The alterations in \textO2 - · {\text{O}}_{2}^{ - \cdot } and H2O2 concentrations were monitored spectrophotometrically which show a rapid increase in \textO2 - · {\text{O}}_{2}^{ - \cdot } production during the initial 2 h, and in case of H2O2, during the eighth hour of cultivation. The level of ROS remained higher at all the time points for the roots of the plants cultivated with Pb2+ and it was proportional to metal concentration. The production of \textO2 - · {\text{O}}_{2}^{ - \cdot } and H2O2 was visualized by means of fluorescence microscope technique. They are produced in nonenzymatic membrane lipid peroxidation and its final product is Malondialdehyde, the level of which increased together with the level of H2O2. As stress intensity raised (duration of treatment and Pb2+ concentration), so did the activities of superoxide dismutases, catalase and ascorbate peroxidase antioxidative enzymes and of low-molecular antioxidants, particularly glutathione (GSH), homoglutathione (h-GSH) and cysteine substrate toward their synthesis. The root cells redox state (GSH/GSSG) dropped proportionally to lead stress intensity.  相似文献   

10.
The Oxygen activating mechanism of Fusarium lipoxygenase, a heme-containing dioxygenase, was studied. The enzyme did not require any cofactors, such as H2O2, however, both superoxide dismutase and catalase inhibited linoleate peroxidation by Fusarium lipoxygenase. A low concentration of H2O2 caused a distinct acceleration in enzymatic peroxidation. These results indicate that both O2? and H2O2 are produced as essential intermediates of oxygen activation during formation of linoleate hydroperoxides by Fusarium lipoxygenase. This peroxidation reaction was also prevented by scavengers of singlet oxygen (1O2), but not by scavengers of hydroxy 1 radical (OH). Generation of O2? in the enzyme reaction was detected by its ability to oxidize epinephrine to adrenochrome. Moreover, the rate of peroxide formation was greater in the D2O than in the H2O buffer system. These results suggest that the Haber–Weiss reaction (O2?+H2O2→OH?+OH·+1O2) is taking part in linoleate peroxidation by Fusarium lipoxygenase, and the 1O2 evolved could be responsible for the peroxidation of linoleate. H2O2 produced endogenously in the enzyme reaction might act as an activating factor for the enzyme. This possible mechanism of oxygen activation can explain the absence of a need for exogenous cofactors with Fusarium lipoxygenase in contrast to an other heme-containing dioxygenase, tryptophan pyrrolase, which requires an exogenous activating factor, such as H2O2.  相似文献   

11.
Summary. It has been reported, that sulphoacetalhehyde is formed in the fagocytozing PMNs and its production is taurine monochloramine mediated. Since H2O2 and secreted MPO are present in the medium the non- and enzymatic peroxidation of taurine of its mono- and dichloramines were examined within the pH range 5.3–7.4. The formation of sulphoacetaldehyde was observed in nonenzymatic hydrolysis of taurine N,N-dichloramine (pH 5.3) as well as for monochloramine at pH 7.4. It was found also that its formation was accelerated in the presence of H2O2, in the MPO/H2O2 and in the full system containing Cl. Additionally it was shown that also horseradish peroxidase (HRP) could catalyze sulphoacetaldehyde production. The sulphoacetaldehyde formation in the examined systems was confirmed with the use of 1HNMR spectra of separated 2,4-dinitrophenylhydrazone derivative. Our results suggest that both non- and ezymatic processes could contribute to the sulphoacetaldehyde formation at site of inflammation. Received May 14, 2001 Accepted July 26, 2001  相似文献   

12.
The mechanism of action of p-chloromercuribenzoate (PCMB) on Serratia marcescens nuclease was investigated. The analysis showed that PCMB forms complexes with DNA. Binding of C7H5O2Hg+ to DNA changes the secondary structure of the DNA. These changes alter the enzymatic activity of S. marcescens nuclease, which was previously found to be sensitive to the secondary structure of the substrates. The nuclease activity was either suppressed or stimulated in the presence of PCMB depending on the C7H5O2Hg+ to nucleotide equivalent ratio. Binding of C7H5O2Hg+ to DNA did not form an abortive enzyme–substrate complex. Binding of Mg2+ to the C7H5O2Hg–DNA complex caused appropriate changes in secondary structure of the substrate. Since Mg2+ and C7H5O2Hg+, though differing in the type of metal cation, are similar in their mechanisms of influence on enzymatic activity of S. marcescens nuclease, the identity of other metal-containing effectors in their mechanism of action on Serratia marcescens nuclease is assumed.  相似文献   

13.
Growth of Cryptococcus neoformans was inhibited by nine nitrogen and sulfur-containing sterols with a heteroatom positioned at C3, C7, C24, C25 or C32 in the lanostane frame. Analysis of the sterol composition of control and treated cells by GC-MS and 1H NMR has proven that the C-methylation reaction catalyzed by the sterol 24-C-methyltransferase (24-SMT) is the crucial first step in a kinetically favored pathway that fails to include obtusifoliol or zymosterol as intermediates. Cultures fed [methyl-2H3]methionine led to two deuterium atoms into each of the newly biosynthesized sterols forming a route lanosterol, eburicol (24(28)-methylene-24,25-dihydrolanosterol), 32-noreburicol and ergost-7-enol to ergosterol. Examination of the substrate specificity of a soluble 24-SMT from C. neoformans showed lanosterol to be the optimal acceptor molecule. Incubation with the test compounds generated induced amounts of lanosterol, eburicol or 32-noreburicol concurrent with a decrease of ergosterol. Among them 24(R,S),25-epiminolanosterol (inhibitor of 24-SMT) showed the most potent in vitro antifungal activity comparable to those of itraconazole (inhibitor of the 14-demethylase). Taken together, these data indicate that treatment with substrate-based inhibitors of 24-SMT, a catalyst not found in humans, can disrupt ergosterol homeostasis involved with fungal growth and therefore these compounds can provide leads for rational drug design of opportunistic pathogens.  相似文献   

14.
It was found that the difference in the partial pressure of oxygen (pO2) resulting from the distinct altitude over the sea level, between Baltimore, Md., USA and Mexico City, about 2,240 meters, is sufficient to cause variance in conjugation frequency in two haploid strains of Kluyveromyces lactis.Further studies confirm that sexual conjugation in K. lactis is highly sensitive to changes in the pO2. Ergosterol which depends on O2 for its biosynthesis, stimulates the mating process, as does the ergosterol precursor, squalene. Ergosterol and O2 effects were found to be additive, suggesting that O2 may influence conjugation in more than one way. Culture, storage and transfer frequency modify both, mating efficiency and the response to O2 and lipid supplement.  相似文献   

15.
Polyamines (PAs) produce H2O2 and nitric oxide (NO) during their normal catabolism and modulate plant growth and development. To explore the biochemical basis of PAs-induced growth inhibition in Triticum aestivum L seedlings, we examined the role of O2·-, H2O2 or NO in shoot and root development. Although all PA treatments resulted in a variable reduction of root and shoot elongation, spermine (Spm) caused the greater inhibition in a similar way to that observed with the NO donor, sodium nitroprusside (SNP). In both cases, O2·- production was completely blocked whereas H2O2 formation was high in the root apex under SNP or Spm treatments. Catalase recovered root and shoot growth in SNP but not in Spm-treated plants, revealing the involvement of H2O2 in SNP-root length reduction. The addition of the NO scavenger, cPTIO, restored root length in SNP- or Spm-treated plants, respectively, and partially recovered O2·- levels, compared to the plants exposed to PAs or SNP without cPTIO. A strong correlation was observed between root growth restoration and O2·- accumulation after treating roots with SNP + aminoguanidine, a diamine oxidase inhibitor, and with SNP + 1,8-diaminoctane, a polyamine oxidase inhibitor, confirming the essential role of O2·- formation for root growth and the importance of the origin and level of H2O2. The differential modulation of wheat growth by PAs through reactive oxygen species or NO is discussed.
Graphical abstract Polyamines, nitric oxide and ROS interaction in plants during plant growth
  相似文献   

16.

Ergosterol as a primary metabolite and precursor of vitamin D2, is the most plentiful mycosterols in fungal cell membrane. Process optimization to increase the yield and productivity of biological products is a topic of interest. Ultrasonic waves have many applications in biotechnology, like cell disruption, and enhancement of primary and secondary metabolites production. This study disclosed an optimal condition for ultrasound-assisted production (UAP) of ergosterol from Penicillium brevicompactum MUCL 19,011 using L9 Taguchi statistical method. The intensity (IS), time of sonication (TS), treatment frequency (TF), and number of days of treatment (DT) were allocated to study the effects of ultrasound on ergosterol production. The results were analyzed using Minitab version 19. The maximum ergosterol, 11 mg/g cell dry weight (CDW), was produced on the tenth day while all factors were at a low level. The days of treatment with a contribution of 45.48% was the most significant factor for ergosterol production. For the first time, this study revealed the positive effect of ultrasound on the production of ergosterol. Ergosterol production increased 73% (4.63 mg/g CDW) after process optimization. Finally, a mathematical model of ultrasound factors with a regression coefficient of R2?=?0.978 was obtained for the ergosterol production during ultrasound treatment.

  相似文献   

17.
Abstract

The direct electron transfer of immobilized haemoglobin (Hb) on nano-TiO2 and dodecyltrimethylammonium bromide (DTAB) film modified carbon paste electrode (CPE) and its application as a hydrogen peroxide (H2O2) biosensor were investigated. On nano-TiO2/DTAB/Hb/CPE, Hb displayed a rapid electron transfer process with participation of one proton and with an electron transfer rate constant which estimated as 0.29 s??1. Thus, the proposed biosensor exhibited a high sensitivity and excellent electrocatalytic activity for the reduction of H2O2. The catalytic reduction current of H2O2 was proportional to H2O2 concentration in the range of 0.2–4.0 mM with a detection limit of 0.07 mM. The apparent Michaelis–Menten constant (Kmapp) of the biosensor was calculated to be 0.127 mM, exhibiting a high enzymatic activity and affinity. This sensor for H2O2 can potentially be applied in determination of other reactive oxygen species as well.  相似文献   

18.
A semidefined medium based on Casamino Acids allowed Lactococcus lactis ATCC 19435 to grow in the presence of oxygen at a slow rate (0.015 h−1). Accumulation of H2O2 in the culture prevented a higher growth rate. Addition of asparagine to the medium increased the growth rate, whereby H2O2 accumulated only temporarily during the lag phase. H2O2 is an inhibitor for several glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase being the most sensitive. Strain ATCC 19435 contained NADH oxidase (maximum specific rate under aerobic conditions, 426 nmol of NADH min−1 mg of protein−1), which reduced oxygen to water, whereby superoxide was formed as a by-product. H2O2 originated from the dismutation of superoxide by superoxide dismutase. Although H2O2 was rapidly destroyed under high metabolic fluxes, neither NADH peroxidase nor any other enzymatic H2O2-reducing activity was detected. However, pyruvate, the end product of glycolysis, reacted nonenzymatically and rapidly with H2O2 and hence was a potential alternative for scavenging of this oxygen metabolite intracellularly. Indeed, intracellular concentrations of up to 93 mM pyruvate were detected in aerobic cultures growing at high rates. It is hypothesized that self-generated pyruvate may serve to protect L. lactis strain ATCC 19435 from H2O2.  相似文献   

19.
The non-enzymatic repair of DNA oxidative damage can occur in a purely chemical system, but data show that it might also occur in cells. Human hepatoma cells (SMMC-7721) and human hepatocyte cells (LO2) were treated with 200 μM H2O2 for 30 min to induce oxidative DNA damage quantified by amount of 8-OHdG and degree of DNA strand breaks, without inducing enzymatic repair. The dynamics of enzymatic repair activity quantified by unscheduled DNA synthesis, within 30 min after removal of H2O2 enzymatic repair mechanism has not been initiated. However, pre-incubation with low micromolar level polyphenols, quercetin or rutin can significantly attenuate DNA damage in both cell lines, indicating that the polyphenols did not work through an enzymatic mechanism. Unscheduled DNA synthesis after removal of H2O2 was also markedly decreased by quercetin and rutin. Combined with our previous studies of fast reaction chemistry, the inhibitory effect of polyphenols have to be assigned to non-enzymatic repair mechanism rather than to enzymatic repair mechanism or antioxidant mechanism.  相似文献   

20.
The degradation of phenanthrene sorbed on soil has been carried out using a H2O2/goethite heterogeneous catalytic oxidation process. The effect of operating variables, such as the goethite concentration, pH, H2O2 concentration, soil organic matter, and bicarbonate ions has been investigated. The reaction followed pseudo-first order kinetics. The rate constants were evaluated and varied between 2.0×10?4 and 1.1×10?3?min?1 depending on the H2O2 concentration. The highest rate of degradation of phenanthrene was observed at a H2O2 concentration of 5?M and 134.0?g/kg goethite. The intermediate product formed during the degradation of phenanthrene was identified to be salicylic acid that finally degraded to CO2 and H2O. H2O2 consumption continued as the OH radical attacked the salicylic acid. More than 80% consumption of the 5?M H2O2 took place within 30?min, and the degradation was almost complete after 3?h of reaction. Neutral pH was found to be effective in the removal of phenanthrene. Both soil organic matter (SOM) and bicarbonate ions in the soil inhibited the oxidation rate of phenanthrene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号