首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Duplicated homeobox genes in Xenopus   总被引:3,自引:0,他引:3  
  相似文献   

2.
Six genes are vertebrate homologues of the homeobox-containing gene sine oculis, which plays an essential role in controlling Drosophila compound eye development. Here we report the identification and expression patterns of all three subfamilies of Xenopus Six genes. Two Six2 subfamily genes (Six1, Six2) showed very similar expression patterns in cranial ganglia, otic placodes and the eyes. Non-neural expression of Six1 and Six2 was observed with mesodermal head mesenchyme, somites and their derivatives, the muscle anlagen of the embryonic trunk. In addition, Six2 expression was also found with mesenchyme associated with the developing stomach and pronephros. Expression of Six3 subfamily genes (Six3.1, Six3.2, Six6.1, and Six6.2) was restricted to the developing head, where expression was especially observed in derivatives of the forebrain (eyes, optic stalks, the hypothalamus and pituitary gland). Interestingly, expression of all Six3 subfamily members but Six6.2 was also found with the pineal gland primordium and the tegmentum. Expression of Six4 subfamily genes (Six4.1, Six4.2) was present in the developing visceral arches, placodal derivatives (otic vesicle, olfactory system), head mesenchyme and the eye. The observed dynamic expression patterns are largely conserved between lower and higher vertebrates and imply important roles of Six family genes not only in eye formation and myogenesis, but also in the development of the gut, the kidney and of placode-derived structures.  相似文献   

3.
The BarH1 and BarH2 homeobox genes are coexpressed in cells of the fly retina and in the central and peripheral nervous systems. The fly Bar genes are required for normal development of the eye and external sensory organs. In Xenopus we have identified two distinct vertebrate Bar-related homeobox genes, XBH1 and XBH2. XBH1 is highly related in sequence and expression pattern to a mammalian gene, MBH1, suggesting that they are orthologues. XBH2 has not previously been identified but is clearly related to the Drosophila Bar genes. During early Xenopus embryogenesis XBH1 and XBH2 are expressed in overlapping regions of the central nervous system. XBH1, but not XBH2, is expressed in the developing retina. By comparing the expression of XBH1 with that of hermes, a marker of differentiated retinal ganglion cells, we show that XBH1 is expressed in retinal ganglion cells during the differentiation process, but is down-regulated as cells become terminally differentiated. Received: 12 August 1999 / Accepted: 5 October 1999  相似文献   

4.
Pancreatic-duodenal homeobox 1 -role in gastric endocrine patterning   总被引:1,自引:0,他引:1  
The gastrointestinal tract is subdivided into regions with different roles in digestion and absorption. How this patterning is established is unknown. We now report that the pancreatic-duodenal homeobox 1 gene (pdx1) is also expressed in cells of the distal stomach. Positive cells include subpopulations of the three main endocrine (gastrin, somatostatin and serotonin) cell types of this region. Pdx1 deficient mice were virtually devoid of gastrin cells, had normal numbers of somatostatin cells and increased numbers of serotonin cells. Pdx1 is thus important for development of the gastrin cells of the antropyloric mucosa of the stomach and probably acts by controlling the fate of gastrin/serotonin precursor cells.  相似文献   

5.
The Cdx-1 and Cdx-2 homeobox genes in the intestine.   总被引:19,自引:0,他引:19  
The past years have witnessed an increasing number of reports relative to homeobox genes in endoderm-derived tissues. In this review, we focus on the caudal-related Cdx-1 and Cdx-2 homeobox genes to give an overview of the in vivo, in vitro, and ex vivo approaches that emphasize their primary role in intestinal development and in the control of intestinal cell proliferation, differentiation, and identity. The participation of these genes in colon tumorigenesis and their identification as important actors of the oncogenic process are also discussed.  相似文献   

6.
Head development in vertebrates requires reciprocal patterning interactions between cranial neural crest and the ectodermal, mesodermal and endodermal components of the branchial arches. Patterning elements within the pharyngeal endoderm and oral ectoderm appear to play defining roles in this process. Several homeobox genes of the NK-2 class (Nkx2-1, Nkx2-3, Nkx2-5 and Nkx2-6) are expressed regionally in the developing pharynx, and Nkx2-1 mutants and Nkx2-5/Nkx2-6 double mutants show loss of thyroid and distal lung progenitors, and pharyngeal cell viability, respectively. Here we examined the expression and genetic role of Nkx2-3 in pharyngeal development. Nkx2-3 was expressed in the pharyngeal floor and pouches, as well as in oral and branchial arch ectoderm. Expression persisted in the developing thyroid until birth, in mucous-forming cells of the lingual and sublingual salivary glands, and in odontogenic epithelium of the mandible. Examination of Nkx2-3 null mice revealed defects in maturation and cellular organisation of the sublingual glands. Furthermore, cusps were absent from mandibular molars and the third molar was occasionally missing. These data suggest roles for Nkx2-3 during pharyngeal organogenesis, although the considerable potential for genetic redundancy within and outside of this gene family may mask earlier functions in organ specification.  相似文献   

7.
Flowers are determinate shoots comprised of perianth and reproductive organs displayed in a whorled phyllotactic pattern. Floral organ identity genes display region-specific expression patterns in the developing flower. In Arabidopsis, floral organ identity genes are activated by LEAFY (LFY), which functions with region-specific co-regulators, UNUSUAL FLORAL ORGANS (UFO) and WUSCHEL (WUS), to up-regulate homeotic genes in specific whorls of the flower. PENNYWISE (PNY) and POUND-FOOLISH (PNF) are redundant functioning BELL1-like homeodomain proteins that are expressed in shoot and floral meristems. During flower development, PNY functions with a co-repressor complex to down-regulate the homeotic gene, AGAMOUS (AG), in the outer whorls of the flower. However, the function of PNY as well as PNF in regulating floral organ identity in the central whorls of the flower is not known. In this report, we show that combining mutations in PNY and PNF enhance the floral patterning phenotypes of weak and strong alleles of lfy, indicating that these BELL1-like homeodomain proteins play a role in the specification of petals, stamens and carpels during flower development. Expression studies show that PNY and PNF positively regulate the homeotic genes, APETALA3 and AG, in the inner whorls of the flower. Moreover, PNY and PNF function in parallel with LFY, UFO and WUS to regulate homeotic gene expression. Since PNY and PNF interact with the KNOTTED1-like homeodomain proteins, SHOOTMERISTEMLESS (STM) and KNOTTED-LIKE from ARABIDOPSIS THALIANA2 (KNAT2) that regulate floral development, we propose that PNY/PNF-STM and PNY/PNF-KNAT2 complexes function in the inner whorls to regulate flower patterning events.  相似文献   

8.
9.
10.
Smith HM  Hake S 《The Plant cell》2003,15(8):1717-1727
Plant architecture results from the activity of the shoot apical meristem, which initiates leaves, internodes, and axillary meristems. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the shoot apical meristem and play important roles in plant architecture. KNOX proteins interact with BEL1-like (BELL) homeodomain proteins and together bind a target sequence with high affinity. We have obtained a mutation in one of the Arabidopsis BELL genes, PENNYWISE (PNY), that appears phenotypically similar to the KNOX mutant brevipedicellus (bp). Both bp and pny have randomly shorter internodes and display a slight increase in the number of axillary branches. The double mutant shows a synergistic phenotype of extremely short internodes interspersed with long internodes and increased branching. PNY is expressed in inflorescence and floral meristems and overlaps with BP in a discrete domain of the inflorescence meristem where we propose the internode is patterned. The physical association of the PNY and BP proteins suggests that they participate in a complex that regulates early patterning events in the inflorescence meristem.  相似文献   

11.
12.
13.
14.
Dickkopf1 (dkk1) encodes a secreted WNT inhibitor expressed in Spemann's organizer, which has been implicated in head induction in Xenopus. Here we have analyzed the role of dkk1 in endomesoderm specification and neural patterning by gain- and loss-of-function approaches. We find that dkk1, unlike other WNT inhibitors, is able to induce functional prechordal plate, which explains its ability to induce secondary heads with bilateral eyes. This may be due to differential WNT inhibition since dkk1, unlike frzb, inhibits Wnt3a signalling. Injection of inhibitory antiDkk1 antibodies reveals that dkk1 is not only sufficient but also required for prechordal plate formation but not for notochord formation. In the neural plate dkk1 is required for anteroposterior and dorsoventral patterning between mes- and telencephalon, where dkk1 promotes anterior and ventral fates. Both the requirement of anterior explants for dkk1 function and their ability to respond to dkk1 terminate at late gastrula stage. Xenopus embryos posteriorized with bFGF, BMP4 and Smads are rescued by dkk1. dkk1 does not interfere with the ability of bFGF to induce its immediate early target gene Xbra, indicating that its effect is indirect. In contrast, there is cross-talk between BMP and WNT signalling, since induction of BMP target genes is sensitive to WNT inhibitors until the early gastrula stage. Embryos treated with retinoic acid (RA) are not rescued by dkk1 and RA affects the central nervous system (CNS) more posterior than dkk1, suggesting that WNTs and retinoids may act to pattern anterior and posterior CNS, respectively, during gastrulation.  相似文献   

15.
16.
Craniofacial disorders caused by mutations in homeobox genes MSX1 and MSX2   总被引:3,自引:0,他引:3  
The molecular biology of the homeobox genes MSX1 and MSX2 is reviewed. In a selective type of tooth agenesis, an MSX1 G --> C transversion results in a missense mutation Arg31Pro. The phenotype is due to haploinsufficiency. Boston-type craniosynostosis involves an MSX2 C --> A transversion, resulting in a missense mutation Pro7His. Three different mutations on MSX2 cause parietal foramina by haploinsufficiency. These mutations, which result in decreased parietal ossification, are in marked contrast to the gain-of-function mutation for Boston-type craniosynostosis, which results in increased sutural ossification.  相似文献   

17.
The upper lip and primary palate form an essential separation between the brain, nasal structures and the oral cavity. Surprisingly little is known about the development of these structures, despite the fact that abnormalities can result in various forms of orofacial clefts. We have uncovered that retinoic acid is a critical regulator of upper lip and primary palate development in Xenopus laevis. Retinoic acid synthesis enzyme, RALDH2, and retinoic acid receptor gamma (RARγ) are expressed in complementary and partially overlapping regions of the orofacial prominences that fate mapping revealed contribute to the upper lip and primary palate. Decreased RALDH2 and RARγ result in a median cleft in the upper lip and primary palate. To further understand how retinoic acid regulates upper lip and palate morphogenesis we searched for genes downregulated in response to RARγ inhibition in orofacial tissue, and uncovered homeobox genes lhx8 and msx2. These genes are both expressed in overlapping domains with RARγ, and together their loss of function also results in a median cleft in the upper lip and primary palate. Inhibition of RARγ and decreased Lhx8/Msx2 function result in decreased cell proliferation and failure of dorsal anterior cartilages to form. These results suggest a model whereby retinoic acid signaling regulates Lhx8 and Msx2, which together direct the tissue growth and differentiation necessary for the upper lip and primary palate morphogenesis. This work has the potential to better understand the complex nature of the upper lip and primary palate development which will lead to important insights into the etiology of human orofacial clefts.  相似文献   

18.
19.
20.
Three knotted1-like homeobox genes in Arabidopsis   总被引:1,自引:1,他引:0  
Five arabidopsis kn1-like homeobox genes were cloned through low-stringency screening of Arabidopsis cDNA libraries with the kn1 homeobox from maize. These five genes were named KNAT1-5 (for kn1-like Arabidopsis thaliana). An analysis of KNAT1 and 2 has been presented previously [19]. Here we present an analysis of the genes KNAT3, 4 and 5. On the basis of sequence and expression patterns, these three genes belong to the class II subfamily of kn1-like homeobox genes [16]. Low-stringency Southern analysis suggests several additional members of the class II genes exist in the Arabidopsis genome. The predicted amino acid sequences of the three genes share extensive homology outside of the homeodomain, including 84% between KNAT3 and KNAT4. Northern analysis shows that although all three genes are expressed in all tissues examined, the level of KNAT3 RNA is highest in young siliques, inflorescences and roots, KNAT4 RNA level is strongest in leaves and young siliques, and KNAT5 RNA level is highest in roots. The specificity of these patterns was confirmed by RNA fingerprint analysis. KNAT3 and 4 are light-regulated as they show reduced expression in etiolated seedlings and also in hy3, cop1 and det1 mutant backgrounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号