首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of [3H]tuftsin to normal and in vivo stimulated mouse peritoneal macrophage populations was studied at 22 degrees C. The [3H]tuftsin binding to thioglycollate-stimulated macrophages was shown to be rapid and saturable, with an equilibrium dissociation constant (K(D)) (calculated from a Scatchard plot) of 5.3 X 10(-8) M. The calculated number of binding sites per macrophage amounts to approximately 72,000. Binding competition studies with unlabelled tuftsin yielded a K(D) of 5.0 X 10(-8) M. [3H] [N-Acetyl-Thr1]tuftsin, an inactive analog of tuftsin, failed to bind specifically to thioglycollate-stimulated macrophages. [N-Acetyl-Thr1]tuftsin and the tripeptide [Des-Arg4]tuftsin failed to compete for tuftsin binding sites, while [D-Arg4]tuftsin, an analog with small tuftsin-like activity, exhibited a low degree of inhibition of [3H]tuftsin binding. Thus a rather high degree of specificity is involved in the binding of the tetrapeptide. Normal as well as six different macrophage populations induced by stimulation with thioglycollate, concanavalin-A, starch, mineral oil, glucan and Bacillus Calmette Guerrin (BCG), exhibited a similar degree of binding of [3H]tuftsin. Corynebacterium parvum (CP)-stimulated macrophages, on the other hand, showed a 6- to 10-fold-lower capacity for tuftsin binding. Under similar experimental conditions, mouse fibroblast and lymphocyte preparations revealed no detectable specific binding. Tuftsin augmented the phagocytic response of normal and stimulated macrophages assessed both for phagocytosis mediated via the Fc-receptor and via non-specific receptors. CP-stimulated macrophages did not exhibit an increased phagocytic response upon treatment with tuftsin.  相似文献   

2.
A radioligand binding assay has been established to study leukotriene specific binding sites in the guinea pig and rabbit tissues. Using high specific activity [3H]-leukotriene D4 ([3H]-LTD4), in the presence or absence of unlabeled LTD4, the diastereoisomer of LTD4 (5R,6S-LTD4), leukotriene E4 (LTE4) and the end-organ antagonist, FPL 55712, we have identified specific binding sites for [3H]-LTD4 in the crude membrane fraction isolated from guinea pig lung. The time required for [3H]-LTD4 binding to reach equilibrium was approximately 20 to 25 min at 37°C in the presence of 10 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl. The binding of [3H]-LTD4 to the specific sites was saturable, reversible and stereospecific. The maximal number of binding sites (Bmax), derived from Scatchard analysis, was approximately 320±200 fmol per mg of crude membrane protein. The dissociation constants, derived from kinetic and saturation analyses, were 9.7 nM and 5±4 nM, respectively. The specific binding sites could not be detected in the crude membrane fraction prepared from guinea pig ileum, brain and liver, or rabbit lung, trachea, ileum and uterus. In radioligand competition experiments, LTD4, FPL 55712 and 5R,6S-LTD4 competed with [3H]-LTD4. The metabolic inhibitors of arachidonic acid and SKF 88046, an antagonist of the indirectly-mediated actions of LTD4, did not significantly compete with [3H]-LTD4 at the specific binding sites. These correlations indicated that these specific binding sites may be the putative leukotriene receptors in the guinea-pig lung.  相似文献   

3.
1. [3H]Batrachotoxinin A-20-α-benzoate ([3H]BTX-b) and [3H]saxitoxin ([3H]STX), radioligands that bind to distinct sites on the voltage-sensitive sodium channel, were bound specifically to saturable sites in rainbow trout (Oncorhynchus mykiss) brain synaptoneurosomes.2. Specific [3H]BTX-B binding was temperature dependent with highest levels of specific [3H]BTX-B binding observed at 7°C. Specific binding was inversely correlated with assay temperature at temperatures above 7°C.3. Saturating concentrations of scorpion (Leiurus quinquestriatus) venom (ScV) stimulated specific [3H]BTX-B binding at 27°C, but not at 7°C. The dihydropyrazole insecticide RH 3421 inhibited specific [3H]BTX-B binding at 7°C but had no effect on specific binding at 27°C. The sodium channel activators veratridine and aconitine and the local anesthetic dibucaine inhibited specific [3H]BTX-B binding at both 7°C and 27°C.4. Displacement experiments in the presence of ScV at 27°C gave an equilibrium dissociation constant (Kd) for [3H]BTX-B of 710 nM and a maximal binding capacity (Bmax) of 11.3 pmol/mg protein. Kinetic experiments established the rates of association (1.17 × 105min−1 nM−1) and dissociation (0.0514min−1) of the ligand-receptor complex.5. The binding of [3H]STX reached apparent saturation at 7.5 nM. Scatchard analysis of the saturation data indicated a Kd of 3.8nM and a Bmax of 1.9 pmol/mg protein.6. These studies provide evidence for high affinity, saturable binding sites for [3H]BTX-B and [3H]STX in trout brain preparations. Whereas certain neurotoxins modified the specific binding of [3H]BTX-B in trout brain synaptoneurosomes in a predictable fashion, other compounds known to affect specific [3H]BTX-B binding in mammalian brain preparations had no effect on specific [3H]BTX-B binding in the trout.  相似文献   

4.
J Hyttel 《Life sciences》1978,23(6):551-555
The subcellular localization of dopamine-sensitive adenylate cyclase was studied in rat brain striatum and compared to the distribution of dopamine binding sites. The highest specific activity of adenylate cyclase activities sensitive to dopamine was associated almost exclusively with synaptic membranes (mithchondrial fraction; P2). Using [3H] haloperidol and [3H] apomorphine as markers for the dopamine receptor, specific binding was observed in both the mitochondrial (P2) and microsomal (P3) fractions. Data for the mitochondrial fraction revealed a heterogeneity of binding sites. Two saturable sites for [3H] haloperidol were observed with Kd values of 2.5nM and 12.5nM respectively. Overall, the localization of multiple binding sites in the crude synaptosomal fraction correlates well with the localization of dopamine-sensitive adenylate cyclase in this fraction.  相似文献   

5.
A high-affinity (Kd= 5.9 nM) specific binding site for [3H]harmaline was detected in membranes from rat and bovine brains. Studies of the regional and subcellular distributions of this binding indicated its close association with monoamine oxidase type A activity (MAO A) measured with [3H]serotonin ([3H]5-HT) as the substrate. Maximal binding capacity and MAO A activity were found in mitochondrial enriched fractions. Mitochondria of synaptosomal or extra-synaptosomal origin exhibited very similar properties with respect to [3H]harmaline binding characteristics and MAO A activity. Among psychoactive drugs, only monoamine oxidase inhibitors (MAO I) prevented the specific binding of [3H]harmaline. Logit-log inhibition curves of binding by MAO I gave only one slope which was not significantly different from 1.0, suggesting the existence of only 1 category of specific sites for [3H]harmaline in the membrane preparations from rat and bovine brains. Consistent with the preferential inhibition of MAO A by harmaline, other MAO I of this class, i.e. clorgyline and Lilly 51641, were 102-2 × 103 times more efficient than deprenyl and pargyline, two inhibitors of MAO type B, in displacing [3H]harmaline from its specific binding site. Ki and IC50 values for the inhibition of [3H]harmaline binding by MAO I and MAO substrates (tryptamine, 5-HT, norepinephrine) were almost identical with those characterizing their action on MAO A activity with [3H]5-HT as the substrate. In conclusion, the specific binding site for [3H]harmaline exhibited all the expected properties of the active site of MAO A. Like the technique of precipitation with a specific antibody, binding of [3H]harmaline should be of great help for studying the structural characteristics of the active site of MAO A and determining the number of MAO molecules in tissues under various physiological conditions.  相似文献   

6.
Abstract— The biochemical and pharmacological characteristics of dopamine agonist and antagonist binding to rat striatal subcellular fractions were studied and compared to the localization of dopamine–sensitive adenylate cyclase activity. The highest specific activity of adenylate cyclase sensitive to dopamine was associated almost exclusively with the crude synaptic membrane fraction (P2). Using [3H]-haloperidol, [3H]apomorphine and [3H]spiroperidol as markers for the dopamine receptor, high affinity and stereoselective specific binding was observed for the crude synaptic fraction and the microsomal fraction (P3). Analysis of the binding of [3H]haloperidol to the striatal microsomal preparation revealed a homogeneous receptor site with a Kd value of 3.0 nm . The data for [3H]haloperidol binding to the crude synaptosomal fraction showed two saturable binding sites with Kd values of 2.5 nm and 12.5 nm . A similar heterogeneous binding profile was observed in the P2 fraction using [3H]apomorphine. The Kd values for [3H]apomorphine in this fraction were determined to be 1.2 nm and 7.2 nm . The effects of various biochemical parameters including ionic strength, salt concentration and pH on the binding of [3H]haloperidol to the P2 fraction were also studied. Overall, these data show that the subcellular localization of multiple binding sites in the crude synaptosomal fraction and the identification of specific binding to purified synaptosomes correlate with the subcellular distribution of striatal dopamine-sensitive adenylate cyclase activity.  相似文献   

7.
《Life sciences》1995,58(5):PL81-PL86
Thieno-triazolodiazepines WEB 2086 and BN 50739 have been described as the potent PAF receptor antagonists. Binding of radiolabeled [3H]WEB 2086 has been widely employed to characterize PAF receptors in different cells. In a search for a PAF receptor in isolated rat hepatocytes, we discovered that the binding of [3H]WEB to rat hepatocytes was highly specific but had a relatively low affinity with a Kd of 113 nM and Bmax of 0.65 pmol/106 cells in freshly isolated cell suspension and Kd of 1.65 μM and Bmax of 2.0 pmol/plate in cultured hepatocytes. No consistent specific binding of [3H]PAF itself was found in the same cell preparations. The binding of [3H]flunitrazepam in the presence of the peripheral type of benzodiazepine receptor antagonist Ro 5-4864 was saturated and exhibited a Ki of 3.8 nM and Bmax of 3.5 pmol/plate. The central type of benzodiazepine receptor antagonist clonazepam also competed for the [3H]flunitrazepam binding, however with a much lower affinity. Various antagonists inhibited the binding of [3H]WEB 2086 with a rank order BN 50739⪢Ro 5-4864≥clonazepam. Interestingly, bicuculline, a specific antagonist of GABA(A) recognition sites, also significantly reduced the binding of [3H]WEB 2086. The binding of [3H]flunitrazepam was inhibited with a rank potency BN 50739⪢WEB 2086. Taken together, these findings suggest that the specific binding of PAF receptor antagonists WEB 2086 and BN 50739 in rat hepatocytes does not involve PAF receptors and occurs via peripheral benzodiazepine and, possibly GABA(A) receptor sites.  相似文献   

8.
Abstract

We have studied the binding of [3H]-NPY and the newly developed non-peptide Y1 receptor antagonist [3H]-BIBP3226 to intact SK-N-MC cells and CHO-K1 cells transfected with the human NPY Y1 receptor gene i.e. CHO-Y1 cells. Whereas the association and dissociation of the specific [3H]-NPY binding was slow, the binding kinetics of [3H]-BIBP3226 binding was very rapid. Saturation binding of both radioligands reveal the presence of an apparently homogeneous population of high affinity binding sites in both cell lines. The corresponding equilibrium dissociation constants are similar for the two cell lines and are close to those obtained from previous competition binding experiments. The specific binding of both radioligands was completely and with high affinity displaced by BIBP3226 and its inactive (S)-enantiomer BIBP3435 was much less potent. Whilst the NPY Y1 agonists NPY, PYY and [Leu31-Pro34]-NPY completely and potently displaced [3H]-NPY binding, they could only displace 70 to 80 % of the [3H]-BIBP3226 binding sites in CHO-Y1 and SK-N-MC cells. A possible explanation can be that only part of the receptors are G-protein coupled. In agreement pertussis toxin was found to reduce high affinity [3H]-NPY binding sites in CHO-Y1 cells whereas [3H]-BIBP3226 binding parameters remained unchanged.  相似文献   

9.
Abstract: [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4°C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of ~70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37°C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors. Although synaptosomal aniracetam binding sites may well be associated with AMPA-sensitive glutamate receptors, specifically bound [3H]aniracetam could not be displaced by cyclothiazide or GYKI 52466, which act as a positive and negative modulator of AMPA receptors, respectively.  相似文献   

10.
《Life sciences》1987,41(13):1567-1576
[3H]Spiroxatrine was examined as a potential ligand for the labeling of 5-HT1A sites in the rat hippocampus. Analysis of the binding of [3H]spiroxatrine in the absence and presence of varying concentrations of three monoamine neurotransmitters revealed that serotonin (5-HT) had high affinity (IC50= 20.7 nM for the [3H]spiroxatrine binding sites, consistent with the labeling of 5-HT1 sites, while dopamine and norepinephrine had very low affinity (IC50=57600 nM and >10−4 M respectively). Saturation studies of the binding of [3H]spiroxatrine revealed a single population of sites with a Kd=2.21 nM. Further pharmacologic characterization with the 5-HT1A ligands 8-hydroxy-2-(di-n-propylamino) tetralin, ipsapirone, and WB4101 and the butyrophenone compounds spiperone and haloperidol gave results that were consistent with [3H]spiroxatrine labeling 5-HT1A sites. This ligand produced stable, reproducible binding with a good ratio of specific to nonspecific binding. The binding of [3H]spiroxatrine was sensitive to GTP, suggesting that this ligand may act as an agonist. This was supported by the finding that spiroxatrine inhibits forskolin-stimulated adenylate cyclase activity (a proposed 5-HT1A receptor model) in the rat hippocampus. Since [3H]spiroxatrine is structurally distinct from other currently available radioligands for the 5-HT1A site, it should provide new information about the properties of this putative serotonergic receptor.  相似文献   

11.
Crude membrane fractions were prepared from rat retinae and used to study the specific binding of [3H]muscimol, a potent GABA agonist. Specific [3H]muscimol binding was enhanced 2–3 fold by pretreatment of the membranes with 0.025% Triton X-100. Two muscimol binding sites were demonstrated with KD values of 4.4 and 12.3 nM. GABA, muscimol, and 3-aminopropanesulfonic acid were the most potent inhibitors of specific [3H]muscimol binding with KI values of 15, 10, and 50 nM, respectively. These data are consistent with binding to the synaptic GABA receptor.  相似文献   

12.
The synthetic peptide octarphin (TPLVTLFK, fragment 12–19 of β-endorphin), a selective agonist of nonopioid β-endorphin receptor, was prepared with specific activity 28 Ci/mmol. The binding of [3H]octarphin to T and B lymphocytes isolated from the blood of donors was studied. It was found that [3H]octarphin binds both to T and B cells with high affinity: K d = 3.0 ± 0.2 and 3.2 ± 0.3 nM, respectively. The specific binding of [3H]octarphin to T and B lymphocytes was competitively inhibited by unlabeled β-endorphin (K i = 1.9 ± 0.2 and 2.2 ± 0.3 nM, respectively) and was not inhibited by unlabeled naloxone, [Met5]enkephalin, [Leu5]enkephalin, α-endorphin, and γ-endorphin. Thus, T and B lymphocytes of human blood possess a nonopioid β-endorphin receptor whose binding is provided by the fragment 12–19 (the octarphin sequence).  相似文献   

13.
[3H]8-OH-DPAT is a selective ligand for labeling 5-HT1A receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [3H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [125I]RTI-55 and [3H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [3H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [3H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [125I]cyanopindolol, [3H]ketanserin/[3H]mesulergine, [3H]GR-65630, [3H]GR-113808 and [3H]LSD) that specifically labeled 5-HT1, 5-HT2, 5-HT3, 5-HT4 and 5-HT5–7 receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.  相似文献   

14.
After murine fetal cells from the rostral mesencephalic tegmentum were isolated, prepared, and cultured; neuronal and glial cells in primary mixed cell cultures were exposed to ferric nitrilotriacetate (Fe-NTA) at varying concentrations. Studies were performed at 23 days in culture after 14 day exposure to Fe-NTA. In addition to morphologic studies, biochemical assays including specific [3H]flunitrazepam (FLU) binding, clonazepam (CLO)-displaceable [3H]-FLU binding, Ro5-4864-displaceable [3H]-FLU binding, [3H]dopamine (DA) uptake, [3H]haloperidol (HAL) binding, [3H]spiperone (SP) binding, glutamine synthetase activity (GS), and protein determinations were performed. The data demonstrate that chelated ferric iron has an adverse effect on these cells. The data also demonstrate that increasing concentrations of Fe-NTA resulted in massive neuronal dropout leaving the culture population virtually all glial; however, the specific binding of [3H]HAL and [3H]SP increased. There was a concomitant decrease in both glutamine synthetase activity and overall protein content. The mechanism of enhancement in the presence of Fe-NTA of [3H]HAL and [3H]SP binding is unknown and may be unique, but may be related to the known increase in D2 receptor ligand affinity in the presence of other multivalent cations (Ca2+ and Mg2+).  相似文献   

15.
Abstract: Specific binding of tritiated dopamine, spiperone, and N-propylnorapomorphine was examined in subcellular fractions from bovine caudate nucleus. All fractions contained at least two sets of specific binding sites for [3H]spiperone (KD 1aPP= 0.2 nM, KD 2aPP= 2.2 nM), the higher affinity sites accounting for one-third to one-eighth of the total. [3H]Spiperone binding was slightly enriched over the total particulate fraction in P2, P3, SPM, and a crude fraction of synaptic mitochondria. A microsomal subfraction (P3B2) exhibited the highest specific binding capacity obtained, representing a fourfold enrichment over the total particulate fraction. [3H]Dopamine exhibited apparent binding to a single class of high-affinity sites in all fractions examined (KDaPP= 4.0 nM). A greater than twofold enrichment was observed in all fractions except myelin and P3, with a fivefold enrichment in SPM and P3B2. At least two classes of receptors were labeled by [3H]-N-propylnorapomorphine (KD 1aPP= 0.55 nM, KD 2aPP= 20 nM), using 50 nM-spiperone together with 100 nM-dopamine to define nonspecific binding. Although binding to the higher affinity site was displaced by spiperone, and lower affinity binding by dopamine, comparison of receptor densities with values obtained by using [3H]spiperone and [3H]dopamine directly suggested that [3H]-N-propylnorapomorphine labeled additional sites. We have also examined a postsynaptic membrane (PSM) fraction obtained from SPM by successive extraction with salt and EGTA followed by sonication and separation on a density gradient. [3H]Spiperone binding in PSM was enriched two- to threefold over unfractionated SPM with a concomitant decrease in [3H]dopamine binding. The enrichment in spiperone receptors was almost entirely due to an increase in the number of lower affinity binding sites, suggesting that these sites may be associated with the postsynaptic membrane.  相似文献   

16.
Abstract

In the present study, we have provided evidence that [3H] rauwolscine and [3H] idazoxan bind to different sites in rabbit urethra. The [3H] idazoxan capacity and affinity was 215 ± 14 fmol/mg protein and 1.59 ± 0.16 nM while [3H] rauwolscine binding parameters were 45.9 ± 3.4 fmol/mg protein and 2.39 ± 0.27 nM. [3H] idazoxan specific binding was inhibited only by compounds possessing an imidazoli(di)ne or a guanidinium moiety, while [3H] rauwolscine specific binding was inhibited by phenylethanolamines and classical α-antagonists. [3H] idazoxan was inhibited by KCI in a competitive and by MnCI2 in a non-competitive way, while other cations such as Na+, Li+ and Mg2+ did not inhibit [3H] idazoxan binding. Moreover, we investigated the regional distribution of [3H] idazoxan and [3H] rauwolscine along the rabbit urethra using quantitative autoradiography. Analysis of the films revealed a different distribution of these two binding sites on the urethral sections.  相似文献   

17.
Abstract

The pharmacological characteristics of muscarinic receptor (mAChR) subtypes in canine left ventricular membranes (LVM) were determined using [3H]quinuclidinyl benzilate ([3H]QNB) and [3H] N-methyl scopolamine ([3H]NMS) as ligands. Binding of [3H]QNB and [3H]NMS was saturable with respect to the radioligand concentrations. Analysis of binding isotherms by Scatchard plot showed that [3H]QNB and [3H] NMS bound to an apparently homogeneous population of mAChRs in LVM, with KD values of 390 ± 100 and 285 ± 34 pM and Bmax values of 240 ± 20 and 133 ± 9 fmol/mg protein, (n=6), respectively. The Hill coefficients for [3H]QNB and [3H]NMS binding were 0.95 ± 0.02 and 0.99 ± 0.01, respectively. Based on the competitive inhibition of [3H] ligand binding, atropine and NMS as well as the selective M1 antagonist PZ revealed no selectivity for these mAChRs. PZ competed with [3H]QNB or [3H]NMS for a single binding site with a Ki value of 0.23 ± 0.03 μM and 0.62 ± 0.10 μM, (n = 6), respectively, which is close to the values of M2 or M3 receptors. The data indicate that the M1 receptor subtype did not exist in canine LVM. Competition of [3H] ligand binding with selective M2 antagonists, AF-DX 116 and methoctramine and the selective M3 antagonists, 4-DAMP and hexahydrosiladifenidol, gave a best fit for a two-binding site model. The inhibition of carbachol-mediated phosphoinositide hydrolysis by PZ, AF-DX 116 and 4-DAMP, generated an affinity profile for this response also dissimilar to that described for the classical cardiac M2 response. Although no other muscarinic receptor mRNA has been detected in this tissue, these data suggest the presence of a second population of muscarinic sites, which may signify an M2 receptor diversity.  相似文献   

18.
Abstract

The specific binding of L-[3H] -glutamic acid (GLU) was investigated in synaptic membranes from rat substantia nigra. L-[3H]-GLU binding to the membrane preparations occurred in a reversible and saturable way. The specific binding was stimulated by the presence of CaCl2 and was reduced by freezing and thawing the membranes. Scatchard analysis of the saturation isotherms yielded a non-linear plot suggesting that the binding reaction does not occur through a simpla bimolecular association. Assuming non-interacting binding sites, a high (KD1, 139 nM; Bmax1, 3.5 pmoles/mg protein) and a low (KD2, 667 nM; Bmax2, 15.1 pmoles/mg protein) affinity L-[3H]-GLU binding site were obtained. The kinetics of dissociation of bound L-[3H]-GLU was biphasic; the respective dissociation rate constant (k-1) being 0.20 min?1 and 0.013 min?1. A series of amino acid receptor agonists and antagonists were tested as inhibitors of L-[3H]-GLU specific binding. Quisqualic acid, L-GLU and D-α-aminoadipate (D-α-AA) were the most potent inhibitors. DL-2-amino-4-phosphonobutyrate (APB), N-Methy1-D-aspartate (NMDA) and D-GLU were moderate inhibitors, whereas diamino-pimelic acid (DAPA) and glutamate diethyl ester (GDEE) exhibited the lowest relative potency. Kainic acid (KA), γ-aminobutyric acid (GABA) and bicuculline were not able to modify at any concentration used the specific binding of L-[3H]-GLU. These data demonstrate the presence of specific GLU binding sites in synaptic structures at substantia nigra level and support the idea that excitatory amino acids may play a role in synaptic transmission in this brain region.  相似文献   

19.
1. [3H]Batrachotoxinin A-20-α-benzoate (BTX-B), a radioligand that labels the alkaloid activator recognition site of the voltage-sensitive sodium channel, was bound specifically to high affinity, saturable sites in a subcellular preparation from house fly (Musca domestica L.) heads that was shown previously to contain binding sites for other sodium channel-directed ligands.2. Specific binding of [3H]BTX-B was observed in the presence of 140 mM sodium or potassium and was inhibited by choline ion.3. Saturating concentrations of scorpion (Leiurus quinquestriatus) venom stimulated the specific binding of [3H]BTX-B four-fold, increasing the proportion of specific binding of 10 nM [3H]BTX-B from less than 15% to 40%. Equilibrium dissociation studies in the presence of scorpion venom gave an equilibrium dissociation constant (KD) for [3H]BTX-B of 80 nM and a maximal binding capacity (Bmax) of 1.5 pmol/mg protein.4. Parallel experiments in the absence of venom gave a KD value of 140 nM and a Bmax of 1.3 pmol/mg protein, indicating that scorpion venom stimulated [3H]BTX-B binding by increasing the affinity of this site approximately two-fold.5. The specific binding of [3H]BTX-B was inhibited by the sodium channel activators aconitine and batrachotoxin and, to a lesser extent, by the anticonvulsant diphenylhydantoin. However, several other sodium channel-directed neurotoxins known to exert allosteric effects on the binding of [3H]BTX-B to mammalian brain preparations did not affect the binding of [3H]BTX-B to house fly head membranes.6. These studies provide evidence for a high affinity binding site in house fly head membrane preparations that exhibits properties expected of the activator recognition site of the voltage-sensitive sodium channel but does not respond to several compounds known to modify allosterically the binding of [3H]BTX-B to sodium channels in mammalian brain.  相似文献   

20.
Summary This work was designed to study the changes produced by cocaine-induced seizures and lethality on dopaminergic D1- and D2-like receptors, muscarinic M1-like binding sites, as well as acetylcholinesterase activity in mice prefrontal cortex (PFC) and striatum (ST). Binding assays were performed in brain homogenates from the PFC and ST and ligands used were [3H]-N-methylscopolamine, [3H]-NMS (in the presence of carbachol), [3H]-SCH 23390 and [3H]-spiroperidol (in presence of mianserin), for muscarinic (M1-like), D1- and D2-like receptors, respectively. Brain acetylcholinesterase (AChE) activity was also determined in these brain areas. Cocaine-induced SE decreased [3H]-SCH 23390 binding in both ST and PFC areas. A decrease in [3H]-NMS binding and an increase in [3H]-spiroperidol binding in PFC was also observed. Cocaine-induced lethality increased [3H]-spiroperidol binding in both areas and decreased [3H]-NMS binding only in PFC, while no difference was seen in [3H]-SCH 23390 binding. Neither SE, nor lethality altered [3H]-NMS binding in ST. AChE activity increased after SE in ST while after death the increase occurred in both PFC and ST. In conclusion, cocaine-induced SE and lethality produces differential changes in brain cholinergic and dopaminergic receptors, depending on the brain area studied suggesting an extensive and complex involvement of these with cocaine toxicity in central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号