首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent evidence suggests that early changes in postural control may be discernible among females with premutation expansions (55–200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene at risk of developing fragile X‐associated tremor ataxia syndrome (FXTAS). Cerebellar dysfunction is well described in males and females with FXTAS, yet the interrelationships between cerebellar volume, CGG repeat length, FMR1 messenger RNA (mRNA) levels and changes in postural control remain unknown. This study examined postural sway during standing in a cohort of 22 males with the FMR1 premutation (ages 26–80) and 24 matched controls (ages 26–77). The influence of cerebellar volume, CGG repeat length and FMR1 mRNA levels on postural sway was explored using multiple linear regression. The results provide preliminary evidence that increasing CGG repeat length and decreasing cerebellar volume were associated with greater postural sway among premutation males. The relationship between CGG repeat length and postural sway was mediated by a negative association between CGG repeat size and cerebellar volume. While FMR1 mRNA levels were significantly elevated in the premutation group and correlated with CGG repeat length, FMR1 mRNA levels were not significantly associated with postural sway scores. These findings show for the first time that greater postural sway among males with the FMR1 premutation may reflect CGG repeat‐mediated disruption in vulnerable cerebellar circuits implicated in postural control. However, longitudinal studies in larger samples are required to confirm whether the relationships between cerebellar volume, CGG repeat length and postural sway indicate greater risk for neurological decline.  相似文献   

3.
The molecular mechanism of the fragile X syndrome is based on the expansion of an CGG repeat in the 5' UTR of the FMR1 gene in the majority of fragile X patients. This repeat displays instability both between individuals and within an individual. We studied the instability of the CGG repeat and the expression of the FMR1 protein (FMRP) in several different tissues derived from a male fragile X patient. Using Southern blot analysis, only a full mutation is detected in 9 of the 11 tissues tested. The lung tumor contains a methylated premutation of 160 repeats, whereas in the testis, besides the full mutation, a premutation of 60 CGG repeats is detected. Immunohistochemistry of the testis revealed expression of FMR1 in the spermatogonia only, confirming the previous finding that, in the sperm cells of fragile X patients with a full mutation in their blood cells, only a premutation is present. Immunohistochemistry of brain and lung tissue revealed that 1% of the cells are expressing the FMRP. PCR analysis demonstrated the presence of a premutation of 160 repeats in these FMR1-expressing cells. This indicates that the tumor was derived from a lung cell containing a premutation. Remarkably, despite the methylation of the EagI and BssHII sites, FMRP expression is detected in the tumor. Methylation of both restriction sites has thus far resulted in a 100% correlation with the lack of FMR1 expression, but the results found in the tumor suggest that the CpGs in these restriction sites are not essential for regulation of FMR1 expression. This indicates a need for a more accurate study of the exact promoter of FMR1.  相似文献   

4.
5.
6.
The (CGG)n-repeat in the 5′-untranslated region of the fragile X mental retardation gene (FMR1) gene is polymorphic and may become unstable on transmission to the next generation. In fragile X syndrome, CGG repeat lengths exceed 200, resulting in silencing of FMR1 and absence of its protein product, fragile X mental retardation protein (FMRP). CGG repeat lengths between 55 and 200 occur in fragile X premutation (FXPM) carriers and have a high risk of expansion to a full mutation on maternal transmission. FXPM carriers have an increased risk for developing progressive neurodegenerative syndromes and neuropsychological symptoms. FMR1 mRNA levels are elevated in FXPM, and it is thought that clinical symptoms might be caused by a toxic gain of function due to elevated FMR1 mRNA. Paradoxically, FMRP levels decrease moderately with increasing CGG repeat length in FXPM. Lowered FMRP levels may also contribute to the appearance of clinical problems. We previously reported increases in regional rates of cerebral protein synthesis (rCPS) in the absence of FMRP in an Fmr1 knockout mouse model and in a FXPM knockin (KI) mouse model with 120 to 140 CGG repeats in which FMRP levels are profoundly reduced (80%–90%). To explore whether the concentration of FMRP contributes to the rCPS changes, we measured rCPS in another FXPM KI model with a similar CGG repeat length and a 50% reduction in FMRP. In all 24 brain regions examined, rCPS were unaffected. These results suggest that even with 50% reductions in FMRP, normal protein synthesis rates are maintained.  相似文献   

7.
The fragile X syndrome is the result of amplification of a CGG trinucleotide repeat in the FMR1 gene and anticipation in this disease is caused by an intergenerational expansion of this repeat. Although regression of a CGG repeat in the premutation range is not uncommon, regression from a full premutation (>200 repeats) or premutation range (50–200 repeats) to a repeat of normal size (<50 repeats) has not yet been documented. We present here a family in which the number of repeats apparently regressed from approximately 110 in the mother to 44 in her daughter. Although the CGG repeat of the daughter is in the normal range, she is a carrier of the fragile X mutation based upon the segregation pattern of Xq27 markers flanking FMR1. It is unclear, however, whether this allele of 44 repeats will be stably transmitted, as the daughter has as yet no progeny. Nevertheless, the size range between normal alleles and premutation alleles overlap, a factor that complicates genetic counseling.  相似文献   

8.
9.
10.
The CGG repeat in the 5' untranslated region of the fragile X mental retardation 1 gene (FMR1) exhibits remarkable instability upon transmission from mothers with premutation alleles. A collaboration of 13 laboratories in eight countries was established to examine four issues concerning FMR1 CGG-repeat instability among females with premutation (approximately 55-200 repeats) and intermediate (approximately 46-60 repeats) alleles. Our central findings were as follows: (1) The smallest premutation alleles that expanded to a full mutation (>200 repeats) in one generation contained 59 repeats; sequence analysis of the 59-repeat alleles from these two females revealed no AGG interruptions within the FMR1 CGG repeat. (2) When we corrected for ascertainment and recalculated the risks of expansion to a full mutation, we found that the risks for premutation alleles with <100 repeats were lower than those previously published. (3) When we examined the possible influence of sex of offspring on transmission of a full mutation-by analysis of 567 prenatal fragile X studies of 448 mothers with premutation and full-mutation alleles-we found no significant differences in the proportion of full-mutation alleles in male or female fetuses. (4) When we examined 136 transmissions of intermediate alleles from 92 mothers with no family history of fragile X, we found that, in contrast to the instability observed in families with fragile X, most (99/136 [72.8%]) transmissions of intermediate alleles were stable. The unstable transmissions (37/136 [27.2%]) in these families included both expansions and contractions in repeat size. The instability increased with the larger intermediate alleles (19% for 49-54 repeats, 30.9% for 55-59, and 80% for 60-65 repeats). These studies should allow improved risk assessments for genetic counseling of women with premutation or intermediate-size alleles.  相似文献   

11.
12.
Fragile X syndrome is an X-linked neurodevelopmental disorder affecting both males and females. Phenotypical characteristics include intellectual deficits, somatic symptoms and behavioural abnormalities caused by loss of the FMRP protein, which leads to destruction of synapses with metabotropic glutamate receptors. The FMR1 gene harbours a CGG repeat in the 5’-untranslated region. The vast majority of fragile-X syndrome patients have a largely expanded CGG repeat (220 or more triplets, designated “full mutation”) and an inactive gene. Full mutation alleles originate upon proliferation of oogonia in the fetal ovary of females who carry a mitotically unstable premutation (59–200 repeats). Premutation carriers have no symptoms of fragile X syndrome; they may, however, experience premature ovarian insufficiency and/or fragile X-associated tremor/ataxia syndrome. The diagnosis of both syndromes requires genetic testing to measure the number of CGG repeats. Prenatal diagnostics of fragile X syndrome is offered to females carrying a pre- or full mutation.  相似文献   

13.
Fragile X syndrome is the most common cause of inherited mental retardation. The incidence has been estimated to be 1 in 1250 males and 1 in 2000 females. Molecular studies have shown that 95% of fragile X syndrome cases are caused by the expansion of a CGG triplet in the FMR1 gene with hypermethylation of the adjacent CpG island. In spite of the high incidence of this syndrome, a female with both FMR1 genes in the expanded form has never been reported. We present here a female from the Canary Islands presenting mental retardation and attention problems. Molecular analysis has revealed that both of her FMR1 genes have the CGG expansion, one with a premutation and the other with a full mutation. We have studied the CGG repeat in the FMR1 gene in 64 members of her family and detected 33 normal individuals, 14 carriers with the premutation (1 male and 13 females), and 18 individuals with full mutations (8 males and 10 females). The index case illustrates that the possibility of both parents being carriers of the fragile X syndrome premutation should be considered in consanguineous families or in small communities. Received: 4 April 1996 / Revised: 3 May 1996  相似文献   

14.
Fragile X syndrome represents the most common inherited cause of mental retardation. It is caused by a stretch of CGG repeats within the fragile X gene, which increases in length as it is transmitted from generation to generation. Once the repeat exceeds a threshold length, no protein is produced, resulting in the fragile X phenotype. Both X chromosome inactivation and inactivation of the FMR1 gene are the result of methylation. X inactivation occurs earlier than inactivation of the FMR1 gene. The instability to a full mutation is dependent on the sex of the transmitting parent and occurs only from mother to child. For most X-chromosomal diseases, female carriers do not express the phenotype. A clear exception is fragile X syndrome. It is clear that more than 50% of the neurons have to express the protein to ensure a normal phenotype in females. This means that a normal phenotype in female carriers of a full mutation is accompanied by a distortion of the normal distribution of X inactivation.  相似文献   

15.
It is generally thought that fragile X-associated tremor/ataxia syndrome (FXTAS) represents a late-onset neurodegenerative disorder occuring in male carriers of a premutation expansion (55-200 CGG repeats) in the fragile X mental retardation 1 (FMR 1) gene. However, several female patients with FXTAS have also been reported recently. Here, we describe a 23-year old woman with positive family history of mental retardation and autism who presented clinically with action tremor, ataxia, emotional disturbances and cognitive dysfunction. Magnetic resonance imaging (MRI) of the brain showed diffuse cortical atrophy, while 1H-MR spectroscopy (MRS) revealed decreased levels of N-acetylaspartate (NAA) in the cerebellum, basal ganglia, and pons. Genetic testing confirmed heterozygous FMR 1 gene premutation of 100 CGG repeats in the abnormal allele and 29 CGG repeats in the normal allele. We concluded that FXTAS may be an under-recognized disorder, particularly in women.  相似文献   

16.

Aim

To assess the role of mRNA accumulation in granulosa cells as the cause of low ovarian response among FMR1 premutation carriers undergoing pre-implantation genetic diagnosis (PGD).

Design

Case control study in an academic IVF unit. Twenty-one consecutive FMR1 premutation carriers and 15 control women were included. After oocyte retrieval the granulosa cells mRNA levels of FMR1 was measured using RT-PCR.

Results

In FMR1 premutation carriers, there was a significant non-linear association between the number of CGG repeats and the number of retrieved oocytes (p<0.0001) and a trend to granulosa cells FMR1 mRNA levels (p = 0.07). The lowest number of retrieved oocytes and the highest level of mRNA were seen in women with mid-size CGG repeats (80–120). A significant negative linear correlation was observed between the granulosa cells FMR1 mRNA levels and the number of retrieved oocytes (R2 linear = 0.231, P = 0.02).

Conclusion

We suggest that there is a no-linear association between the number of CGG repeats and ovarian function, resulting from an increased granulosa cells FMR1 mRNA accumulation in FMR1 carriers in the mid-range (80–120 repeats).  相似文献   

17.
Premutation alleles (55-200 CGG repeats) of the fragile X mental retardation 1 gene (FMR1) are known to contribute to the fragile X phenotype through genetic instability and transmission of full mutation alleles (>200 repeats). There is now mounting evidence that the premutation alleles themselves contribute to clinical involvement, including premature ovarian failure among female carriers and a new tremor/ataxia syndrome among older male carriers. Recent observations also provide direct evidence of dysregulation of the FMR1 gene in the premutation range, which may explain many of the clinical observations.  相似文献   

18.
The human FMR1 gene contains a CGG repeat in its 5' untranslated region. The repeat length in the normal population is polymorphic (5-55 CGG repeats). Lengths beyond 200 CGGs (full mutation) result in the absence of the FMR1 gene product, FMRP, through abnormal methylation and gene silencing. This causes Fragile X syndrome, the most common inherited form of mental retardation. Elderly carriers of the premutation, defined as a repeat length between 55 and 200 CGGs, can develop a progressive neurodegenerative syndrome: Fragile X-associated tremor/ataxia syndrome (FXTAS). In FXTAS, FMR1 mRNA levels are elevated and it has been hypothesised that FXTAS is caused by a pathogenic RNA gain-of-function mechanism. We have developed a knock in mouse model carrying an expanded CGG repeat (98 repeats), which shows repeat instability and displays biochemical, phenotypic and neuropathological characteristics of FXTAS. Here, we report further repeat instability, up to 230 CGGs. An expansion bias was observed, with the largest expansion being 43 CGG units and the largest contraction 80 CGG repeats. In humans, this length would be considered a full mutation and would be expected to result in gene silencing. Mice carrying long repeats ( approximately 230 CGGs) display elevated mRNA levels and decreased FMRP levels, but absence of abnormal methylation, suggesting that modelling the Fragile X full mutation in mice requires additional repeats or other genetic manipulation.  相似文献   

19.
20.
Summary .  Motivated by molecular data on female premutation carriers of the fragile X mental retardation 1 ( FMR1 ) gene, we present a new method of covariate adjusted correlation analysis to examine the association of messenger RNA (mRNA) and number of CGG repeat expansion in the  FMR1  gene. The association between the molecular variables in female carriers needs to adjust for activation ratio (ActRatio), a measure which accounts for the protective effects of one normal X chromosome in females carriers. However, there are inherent uncertainties in the exact effects of ActRatio on the molecular measures of interest. To account for these uncertainties, we develop a flexible adjustment that accommodates both additive and multiplicative effects of ActRatio nonparametrically. The proposed adjusted correlation uses local conditional correlations, which are local method of moments estimators, to estimate the Pearson correlation between two variables adjusted for a third observable covariate. The local method of moments estimators are averaged to arrive at the final covariate adjusted correlation estimator, which is shown to be consistent. We also develop a test to check the nonparametric joint additive and multiplicative adjustment form. Simulation studies illustrate the efficacy of the proposed method. (Application to  FMR1  premutation data on 165 female carriers indicates that the association between mRNA and CGG repeat after adjusting for ActRatio is stronger.) Finally, the results provide independent support for a specific jointly additive and multiplicative adjustment form for ActRatio previously proposed in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号